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discussion is based upon a division of such reactions into two basic classes,
depending on the restraints imposed. Where no restraints exist, the model flies
freely and the forces may be inferred from the accelerations, cither measured
directly or derived from displacement vs. time data, When the model is supported,
the forces are determined from measurements of the mechanical strains induced in
suitably designed supports. Hybrid techniques, where these extreme cases of no
restraint or nearly complete restraint cannot be assumed, are also discussed.
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SUMMARY

Attention is drawn to the principle whereby the aerodynamic
forces on a model in a wind tunnel are determined by measuring the
reactions to them. The discussion is based upon a division of
such reactions into two basic classes, depending on the restraints
imposed.  Where no restraints exist, the model flies freely ana
the forces may be inferred from the accelerations, either measured
directly or derived from displacement vs. time data. When the
model is supported, the forces are determined from measurements of
the mechanical strains induced in suitably designed supports.
Hybrid techniques, where these extreme cases of no restraint or
nearly complete restraint cannot be assumed, are also discussed.

A detailed discussion of transduce:r sensing elements and

their incorporation into measuring systems is given. Some
particular systems are also described.
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EDITOR'S PREFACE

This AGARDograph is the second to be commissionad by the Fluid Dynamics
Panel to deal with instrumentation techniques used ia hypersonic short-duration
facilities. The first (by D.L. Schultz and T.V, Jones) was concerned with heat-
transfer measurements in these flow conditions; the present volume provides a
comprehensive account of the measurement of aerodynamic forces and moments.

Balance methods and free-flight techniques are discussed fully and in
separate chapters, These are preceded by a detailed mathematical analysis
of unrestrained motion, of reactions in support systems with one or more
degrees of freedom, and of partially restrained motion. The author has thus
been at pains to cater throughout for the differing needs of the wind-tunne]
experimentalist, the balance designer and the data analyst: indeed, the cpening
chapter provides these respective users with pointers which indicate where in
the subsequent chapters their requirements are met.

R. C. PANKHURST
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CHAPTER 1
INTRODUCTION

Experimental aerodynamics has two main functions. ¢t must provide design data for more or less
specific projects and it is also used to carry out fundamental research into the behaviour of flowing
fluids.  Frequently the two functions become inseparable, increasingly so as flight vehicles become more
refined. The origins of experimental aerodynamics ar2 not entirely clear, but certainly by the middle
of the eighteenth century Benjamin Robins was investigating the drag of cannon balls at speeds greater
than that of sound, using the ballistic pendulum which he had invented for the purpose. He also carried
out tests using a whirling arm, as did several others including Cayley about a hundred years later. The
wind tunnel seems to have been first used by Wenham and Brown in 1866. A few years later Horatio Phillips
used an ejector driven stream to carry out systematic tests on aerofoil shapes which demonstrated that the
larger part of the 1ift arises from a fall in pressure on the upper surface. However it was the Wright
brothers who first undertook systematic tests in a wind tunnel with the deliberate aim of obtaining data
for a specific project; these experiments cuiminated in their historic flight of 1903 (see Gibbs-Smith,
1970).*

It has been claimed (Poisson-Quintor,, 1968) that design data of the kind sought by the Wrights in
preparation for the first powered, manned flight have to be accurate in contrast to measurements for
research purposes which need often be only qualitative. This is perhaps to overstate the case, since
even when obtaining design data, it is rarely possible to achieve complete aerodynamic simulation in
ground test equipment, and the pursuit of extreme precision may be misguided. On the other hand high
a. suracy in measurement is often needed when testing the predictions of some fundamental theory.

This is not to say that the "global information" needed for design purposes need be no more than
qualitative; far from it., Br% when, for example, the results have to be extrapolated to different
Reynolds numbers from those ¢f the tests, one may be forced to accept uncertainties in the extrapolated
results, and may not be jusiified in pursuing very high accuracy in the measurements themselves.
Nevertheless one would like to be quite clear how the uncertainties arise, so that when it is necessary
remedial action can be taken to reduce them., To do this one must of course have control over the
performance of the measuring system, and the extent to which this is possible is governed by its detailed
design, and the soundness of the principles upon which this design is based. Simplicity of concept and
application are both generally regarded as conducive to high reliability, if only because there are then
fewer things to go awry. However it is not always possible to achieve this simplicity throughout a
measuring system which often consists of a chain of interconnected devices. Such is the case when one
is faced with measuring the aerodynamic loading on a body immersed in a flow which lasts a fraction - often
a very small fraction - of a second.

The early force measuring systems in continuously-operated wind-tunnels were simple lever
arrangements in which the aerodynamic load was balanced by weights - hence the name “force-balance" -.
The later balances of this type were capable of measuring several components of the load, in some cases
all six; in other words they were able to resolve the force vector and determine the point through which
it acted. Pankhurst & Holder (1952) describe several such balances. These balances are on the whole
cumbarsome to operate, particularly when large loads are involved; and because of their high inertia,
they are unsuitable for other than steady situations. Automatic balancing systems can of course be used,
and often are in the interests of efficient use of expensive plant. Even so the response times of these
automatic "wzighing machines" are very limited, As the aerodynamicist became interested in higher speeds,
the need for economy of operation became greater. Some of these high-speed tunnels are of the
intermittent type, driven by the release of air stored at high pressure. The characteristic test times
of such tunnels may be measured in minutes. They can be operated manually, but automatic or semi-
automatic systems, both for operation and data recording, provide a more efficient means of gathering Jata.
For a given quantity of stored energy, the test flow duration reduces with increase of test flow speed.
This does net in itself raise .7y fundamental difficulty, since the storage capacity may always be
increased, in principle. However as the flow-speed in the test section becomes higher, condensation,

* An alphabetical 1ist of references is appended.
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both of its water vapour cortent and of some of the constituents of the air, takes place. Driers can be
included in the system to remove the moisture, and heaters added to enable the expansion to take place to
high supersonic Mach numbers, The test-times in such tunnels are still fairly long and in some cases
continuous-operation is possible. Even in these last cases however, the tunnels are so costly to
operate that automatic systems become the norm, The aerodynamic forces are derived from measurements of
the strain in calibrated "load-1inks" on which the models are mounted (Rebuffet, 1956), or, when support
interference has to be avoided, by flying models freely in the test stream and recording their motion
(Dayman, 1966).

When, in the 1950's, experimental aerodynamicists turned their attention to hypersonic flows, the
emphasis had changed. Although hypersonic flows can be generated in continuously-operated tunnels, for
example by using helium as the test gas (Bogdonoff & Hammitt, 1954 and Bogdonoff & Vas, 1959) or by using
just sufficient heating to avoid liquefaction without being too concerned about complete simulation, the
aerodynamic heating problem itself had become the major interest. The main preoccupation in these early
tests was the simulation of the high specific enthalpy of flows typical of those corresponding to the
flight of ballistic missiles and of satellite re-entry. Such high anthalpies were readily generated in
a shock-tube, a device invented by Vieille, (1899), revived by Payman & Shepherd in the 1930's, and then
after 1950, when electronic instruments became widespread, widely used for fundamental studies in aero-
thermodynamics, following the work of Bleakney and his colleagues (see, for example Griffith, 1971).

The shock-tube is basically a very simple device. It consists of a long tube divided into two
sections by a diaphragm. On one side of this diaphragm there is the test gas at a low pressure; on the
other side the driver gas at a high pressure., When the diaphragm is burst, the expanding driver gas is
preceded into the low pressure region by a shock-wave which heats, accelerates and compresses the test gas.
The working fluid is the gas between the moving shock-wave and the expanding driver gas. Although the
flow Mach number is fairly Jow (about 3 is the maximum value that can be achieved in air), the
temperature may he several thousand kelvin, For studies of heat-transfer-rate in a stagnation region,
the Mach number is relatively unimportant, and the shock-tube proved an admirable tool for such measurements.
The techniques used are the subject of the first monograph (Schultz & Jones, 1973) in a series,
of whicn this is the second,

The feature which perhaps most distinguishes a shock-tube from the fairly conventional intermittent
high-speed tunnel, is the very short duration of the quasi-steady, uniform test region, often only a few
microseconds, rarely exceeding a millisecond. The cross-sectional dimensions are also generally fairly
small, typically less than 150 mm in diameter, so that only the simplest tests can be conducted. In such
flows there seemed 1little hope of making any significant force measurements. Then several devices were
invented to generate hypersonic flows with longer durations in somewhat larger test chambers; almost all
these devices stem in one sense from the shock-tube, and have a short test duration, though longer than
that of the simple shock tube. For the very high enthalpy tunnels this is both a strength and a weakness;
a strength because the tunnel structure is not heated significantly and thereby weakened, a weakness
because the measuring techniques become complex.

The basic shock-tube was modified, first by adding an expansion nozzle to its end, so as to
increase the flow Mach number from supersonic to hypersonic, and at the same time increase the size of the
test section (Hertzberg, 1951). Because the gas had been heated by the passage of the shock-wave, its
enthalpy was high enough to avoid liquefaction after expansion. Unfortunately the shock-wave was
severely attenuated as it passed along the divergent nozzle, and the duration of quasi-steady flow was
severely curtailed below that in the shock-tube itself, Subsequently ngtzberg, Smith, Glick & Squire
(1955) allowed the primary shock-wave to reflect from the end wall of the shock-tube, thus creating a
region of even hotter, high pressure gas which they used as the reservoir for a convergent-divergent
nozzle, rather in the manner of a conventional blow-down tunnel. The effects of the wave interactions
and reflections which occur within the shock-tube were delayed by operating the “"shock-tunnel” in the
“tailored-interface mode”, the name given to the condition in which the acoustic impedances of the shock-
compressed gas and the expanded driver gas are equal. The starting process within the nozzle was
accelerated by using a second diaphragm at the nozzle entrance (which bursts as the shock is reflected
from it) and evacuating the nozzle and test section to a very low pressure prior to operation. In this
way test flow durations up to about 25 ms can be achieved,
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With the emphasis still on simulating high enthalpy flows the "hotshot" tunnel appeared (Perry &
MacDermott, 1958). 1In this device the gas in the reservoir was heated by discharging an electric arc
through it. Such tunnels are capable of stagnation temperatures of about 10 0CO K, the flow duration
depending on the stagnation pressure level and the extent of any cooling provided for the electrodes and
nozzle throat. At very low pressures such tuniels can be operated continuously, while at high pressures
the test duration may be about 700 ms, Unfortunately the flow in an arc-heated tunnel is usually
contaminated with electrode materials, and they are far from ideal for aerodynamic studies.

It was soon realised that for many such studies, complete simulation was not necessary. When the
flow chemisiry plays a secondary rdle, one can concentrate on obtaining realistic Mach and Reynolds numbers,
and relax the requirement on stagnation enthalpy; the stagnation temperature need be only sufficiently high
to avoid liquefaction of the test gas as it expands and cuois in the nozzle. This led to the development
of & number of tunnels in which the reservoir gas is heated and compressed by a free piston - in some a
light piston, in others a heavy piston is used. In the 1ight, free-piston tunnel, or gun-tunnel, a piston
is placed just downstream of the diaphragm separating the high and low pressure regions of a device
otherwise resembling a shock-tube. Upon diaphragm rupture, the piston is driven along the low pressure
section containing the test gas, which is thus heated by a sequence of compressions as a shock wave is
reflected back and forth between the piston face and the end of the drive tube., High stagnation pressures,
and consequently high Reynolds numbers, can be achieved in these gun-tiunnels, with stagnation temperatures
limited to about 2000 K, their early promise (Cox & Winter, 1957) being somewhat unrealised because of the
structural inability of a 1light piston to withstand the shock louding. At moderate stagnation
temperatures, of order 1100 K say, the rate of heat loss from the reservoir gas to the tunnel walls is
tolerable and test flow durations are typically in the range 20 ms to 100 ms (Bray, 1962),

Of the many other piston driven tunnels, the "Lon,shot" tunmel of Perry (1964) is the most
important from the present viewpoint. A heavier piston is used than in a gun-tunnel, and to minimise the
effects on the reservoir gas of the piston "rebound", a system of one-way check-valves is used tu irap the
compressed test gas and allow it to expana along the nozzle from a constant-volume region. Because the
reservoir is a constant-volume region, the stagnation pressure decreases during a test. This tunnel is
now installed at the von Karman Institute for Fluid Dynamics, Brussels, and reservoir conditions of 2000 K
and 2 000 atmospheres pressure have been obtained (Richards & Enkenhus, 1970a) with test {low durations

of about 40 ms.

A device of a siightly different kind was proposed by Ludwieg (1957). In essence, it is a
conventional blow-down sunersonic tunnel, but it makes use of an unsteady expansion to accelerate the gas
before it enters the convergent-divergent nozzle, In the conventional tunnel, reflected waves within
the reserveir lead to severe pressure fluctuations during the tunnel start; in the Ludwieg-tube tunnel,
the reservoir consists of a very long tube, and the useful flow is terminated when the unsteady rare-
faction wave, having been reflected from the far end of this tube, returns to the nozzie entrance. To
obtain hypersonic flows without liquefaction, the gas in the reservoir must be heated; an external tube
heater is used at the AVA, Gottingen, where test flow durations up to about 500 ms are obtained in the
longast of their Ludwieg-tube tunnels.*

An important feature of all these flow generating devices, or impulse tunneis, is the manner in
which a test is initiated. Because the duration of the quasi-steady flow used for test purposes is $o
short, one cannot afford to lose any of it. Tae release of the gas stored in the reservvir - using this
in the wider sense to include the driver chamber of a shock-tunnel for example - must pe very rapid. In
genaral, conventional valves are unsuitable, and bursting diaphragms are used. To withstand the high
initial precsures dcross them, these diaphragms are often thick metal discs, which after bursting and

* A variety of other hypersonic impulse tunnels has been proposed and some are being actively developed.
They are characterised by very short test times on the whole, typically ten microseconds or so, and
there seems little prospect of making force-measurements in such devices using established techniques.
We shall not therefore pursue their description here, being merely concerned to set the scene for a
discussion of the established methods and those which may be readily foreseen, The interested
reader is referred to the recent survey by Lukasiewicz (1973).
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"petalling" (they are usually so weakened that they "petal" cleanly, and do not shed fragments) impact the
walls of the tunnel. This sends stress waves along the structure as does also the release of the pressure
as the diaphragm opens. Forces are likewise transmitted through the structure of the tunnel as the shock
waves are reflected from the end wall of the channel, Unless the model upon which the aerodynamic forces
are to be measured is isolated from tiie tunnel structure, it will vibrate, and the measuring system will
register these vibrations, spoiling the test record.

Again the nozzle starting process is such that a shock-wave passes along it initially, foilowed by
other waves which all impinge on Lhe model before the onset of the quasi-steady flow. The mode® thus
suffers a transient loading which has a fairly complex waveform. Both the model and the measuring system
react to this loading, and are "in motion" before the quisi-steady flow is established around the medel.
The nature of this motion aepends upon how the model is supported. The transient starting process is,
hopefully, of shorter duration than the test period, which as we have noted may be in the range frcm below
one millisecond up to perhaps several hundreds of milliseconds, depending on the type of tunnel, However
the effects of the motion which it induces will persist during the test period, and some way of accounting
for it must be found., The starting process itself must occupy as little time as possible, and the
practice of isolating the nozzie and test section from the reservoir by a diaphragm, and evacuating the
former, is common, Typically the ambient pressure in the test section prior to initiating a test is of
order 0.01 torr, so that the starting waves pass rapidly through it in spite of the severe attenuation
they suffer along the divergent section of the nozzle. The designs of the model, its supports and the
measuring systems must take account of this vacuum environment. For example transducers which are.
operated by means of an external electrical energy supply must have an adequate means of dissipat.ng any
heat generated, and time must be allowed for the system to equilibrate before the test is conducted.

In most of these impulse tunnels, the "preparation time" is measured in hours, and it culminates
in a test which lasts milliseconds. These preparations involve setting up the test model at the required
attitude, loading diaphragms into place, evacuating the different sections of the tunnel separated by
these diaphragms, and charging them with the appropriate gases to the required pressures. At the same
time, the measuring equipment must be made ready. This latter is itself of a somewhat specialist nature.
Because of the short test period it must respond quickly and the data produced must be recorded
automatically. Tc achieve adequate time resolution, the “"measure and record” command must be given at a
time related to the start of the useful test period. This means that it must be provided by some eveat
wnich occurs during the "firing sequence” of the tunnel. This is not difficult in principle - in fact
the modern "transient event recorder" makes it particularly simple as we shall discuss later (see
Chapter 3) -. It does however mean that "trigger signals” have to be provided to determine the period
during which data are recorded. In some tunnels (hot-shot tunnels and combustion-driven shock-tunnels
for example) large electrical discharges initiate the firing sequence, and stray electro-magnetic
radiation often interferas with the triggering pulse generators and with the transducer amplifiers. These
problems arise with all measurements in such tunnels, not just force measurements, but we draw attention
to them merely to point out that the overall system design must take account of a variety of indirect
influences upon it.

The measurement of transient forces is an indirect process; one does not measure them by
comparison with a standard in the way one measures length. In general we measure the reaction to a
transient force. Force of course is a vector quentity, so that its direction as well as its magnitude is
important. Moreover its line of acticn is also importani - in other words the couple it produces,
another vector quantity, must alsc be determined. We must therefore measure six independent quantities,
in the general case, to determine the aerodynamic load. The six components are often of widely differing
magnitudes; even when some are nominally zero, the remainder may differ considerably in magnitude from
one another. These differences create a number of problems for the designer of a measuring system.,

The magnitudes of the aerodynamic loads vary considerably from one tunnel to another, and even for
a particular tunnel cen be varied over two or more orders of magnitude by changing the initial pressure
and e¥fective nozzle-area ratios. A brief glance at the "Inventory of wind-tunnels in the United Stgﬁes"
(Pirrello, Hardin, Heckart & Brown, 1971) for example, shows that in the 2440 mm (96 in) shock-tunnel at
Cornell Aergnautical Laboratory (now CALSPAN) the dynamic pressure in the test section may vary in the
range 1 - 1000 kN/m?, while that in the Boeing 762 mm (30 in) shock tunnel has an even wider range of
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operating conditions.

In general, one is clearly not going to be able to use one force measuring system to cover all the
conditions which might be met in a single tunnel, let alone expect to be able to transfer the system from
oné tunnel to another without considerable modification. Although we shall later describe in some detail
a few of the force measuring systems which have been successfully used, we shall therefore largely
concentrate in this monograph on the more fundamental aspects of system design and the interpretation of

the data produced. Particular sysiems will be described where they illustrate the application ¢f these
principles.

Chapter 2, which follows this Introduction, is a discussion of the general kinematic and dynamic
(including aerodynamic) principles involved. We have remarked already that the forces are determined by
measuring the reactions to them. The discussion is founded on this concept and it is divided into two
main parts depending on tha nature of these reactions, which in turn depend upon the constraints imposed.
When the model is held in the test stream on supports stiff enough to maintain it at the required attitude
to the flow, these supports are strained by the loads transmitted from the model. By a suitable choice

of supports these strains may be measured and interpreted in terms of the aerodynamic Joads on the model.
This constitutes the "force-balance technique",

When the model is unconstrained, it accelerates under the action of the forces, and by measuring
the accelerations the forces may likewise be determined. This is the "free-flight technique”.

In fact the force-balance technique cannot involve a strictly stationary model, because no strains
would result. A motion therefore takes place, and because of the restoring forces due to the stiffness
of the supports, the model and its mounting oscillate. Part of the reaction tu the transient loading is
thus inertial, and it may benecessary to ccmpensate the "strain data" for this inertial response., This
involves a hybrid technique usually referred to as the "acceleration-compensation" method.

It is general practice among aerodynamicists to express the aerodynamic forces with reference to
"wind axes"; thus we use 1ift and drag and describe their variation with incidence, angle of yaw, etc.
During a free flight, the attitude of the model to the flow will, in general, change. He must therefore
be quite clear, in describing the measured data, to just what axis system the components of the vector
refer. Chapter 2 begins with a description of the more widely used coordinate systems and the relations
between them. We then proceed to consider the equations of motion for a model flying freely in a wind-
tunnel, and draw attention to the approximations usually made in formulating them, and to the forms they
take in special cases of interest. The particular forms in which free-flight data are usually obtained
are then related to these equations in a discussion of the analysis of experimental data. Particular
attention is paid to the way in which one can relate the aerodynamic data to the flow, assumed known,
though the measurements _concern tne motion of the model relative to the laboratery. Most of these data
handling procedures are adaptations of those used in the ballistic range, procedures which have been very
fully discussed by Camning, Seiff & James (1970) in AGARDograph 138, to which we shall continually refer.

We then discuss the fundamental aspects of measuring transient forces on a model from the reactions
jnduced in the supports. The emphasis is largely on the design problem of minimising the effects of the
induced motion, albeit small. HWhere these inertial effects cannot be made negligible one must resort to
compensation; the principles of such methods are outlined. Analogously, freely-flying models carrying
accelerometers may need to be compensated for the weak restraints exerted by the signal leads and any
tethering system used to prevent damage to these leads.

Chapter 2 concludes with a brief account of the aerodynamic irterference caused by the presence
of supports.

Chapters 3 and 4 are concerned with the choice and design of measuring equipment and with the
experimental methods themselves. Chapter 3 is devoted to force-balances ‘and includes some account of
acceleration ccmpensation and the principles of the design of the accelerometers which are needed to
effect it. We treat in some depth the principles of transducer design; in particular the chapter
contains a detailed discussion from the phenomenological viewpoint of piezo-electric and piezo-resistive
transducer sensing elements. Because large outputs can be obtained for small strains, they are eminently
suitable as the sensoys of devices with high inherent natural frequency and low deflections.  Although
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much of the accounts can be found elsewhere, it is hoped that by bringing them together here and keepiny
in mind a particular application, the tasks of both the balance designer and the user are better served.

" The design of balances using piezo-resistive sensors - the so-called strain-gauge balances - owes much to

conventional strain-gauge balance design. We have not hesitated to draw heavily on this experience.

On the other hand, the use of piezo-electric sensors in wind-tunnel force-balances has been pioneered in,
and is almost exclusive to, hypersonic impulse tunnels, although a variety of load cells based on piezo-
electric quartz is available commercially for general applications, and special transducers have been
developed to measure the cutting forces exerted by various machine tools (Kistler Instruments catalogue).
On the whole the constraints imposed on a force transducing system for use in a short duration hypersonic
wind-tunnel are such that each balance is a separate design, though occasionally scaling can be employed.
It is hoped that the account given in Chapter 3 will enable the designer to exercise his wide discretion,

and because we have strayed slightly outside conventional applications, perhaps produce some innovative
designs.

The sensors themselves are only part of the measuring system, The way they are incorporated is
fully discussed also. In the case of piezo-resistive strain-gauge systems, electrical supplies and high
sensitivity amplifiers are also needed. On the other hand, piezo-electric devices are self-generating,
but they require rather special amplifiers. These electrical systems together with techniques for

recording transient data are also outlined in Chapter 3, which ends with a discussion on the calibration
of force~balances.

Chapter 4 is an account of free-flight methods, interpreted broadly to include partially-constrained
systems in which the number of degrees of freedom is limited. The chapter begins with a discussion of
the criteria which govern the design of the model so that full advantage can be taken of the available
test time and the size of the test volume. It continues with descriptions of some of the techniques
which have been used to make models having appropriate inertial characteristics. The success of the
free-flight technique depends, in part, upon being able to "launch" the model at the required attitude
with a minimum loss of valuable test-time. The nature of this launch depends upon the particular
measuring techniques to be employed. The remainder of Chapter 4 is devoted to both of these topics.

flo attempt is made at a critical appraisal of the aerodynamic data obtained by the methods outlined,

nor is any attempt made at a summary. At various stages throughout this monograph it is pointed out that
each system must be to a large extent unique, and this is the conclusion to be drawn if there is one.

The duration of the test period does restrict the choice of the k.ad of system which can be used in a
particular tunnel, Where for example the free-flight technique is chosen together with conventional
photographic methods for recording the motion, the test time must be sufficient to produce displacements
which can be adequately resolved. When it is not suificient, the free-flight technique may still be
possible, but a different data collection method is necessary, for example accelerometers, or Doppler
frequency-shift techniques. This does not always mean that similar systems cannot be used in different

tunnels, but merely that to obtain optimum performance, the tunnel and its force-measuring system should
be carefully matched.

The present state of the art is such that reasonably reliable measurements can be made, but none
of the methods developed so far can claim a very high overall precision. Perhaps i: is remarkable
enough that a multi-component measuring system should be capable of producing data, accurate within a few

per cent, in the small fractions of a second typical of the test duration of most hypersonic impulse
tunnels.
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1 ; CHAPTER 2
SOME_FUNDAMENTAL PRINCIPLES ‘

2.1 Introduction

Lkant s

, The measurement of forces and moments acting on a body cannot be carried out directly in the same
: sense that length can be measured by comparison with a standard. Forces, and we shall use the term
hereafter in the generalised sense to include moments, can only be determined by measuring the effects
they produce, that is by determining the reactions to them. Either the displacements of the body itself
or of its supports, or the time rates of change of the displacements of the body are measured, directly or
indirectly.

o

ot

For the measurement of forces of short duration - transient forces - the difficulties are at once
clear. Significantly "large" displacements can only take place when the inertia of the body is relatively
small so that the accelerations are also large. When it is not possible to provide a body of sufficiently
Tow inertia one must either be able to measure very small displacements or the accelerations produced by §
the transient forces must themselves be measured. Fortunately it is possible to detect very small
displacements., Using strain gauges, either active or passive, the small strains in the supports produced
by the forces transmitted to them can be used to produce substantial electrical changes. With these
several possibilities in mind we can examine the relationship between the forces to be measured and the ;
effects they produce. All practical systems are in some degree compliant so that they move under the !
action of forces, The motion produced by the action of forces on a system is described by the equations
of motion for the system. These equations of motion may be formulated in a number of ways, but for our
purposes two will be sufficient, the Newtonian and the Lagrangian. A complete discussion of the two
approaches may be found in a number of textbooks; here we merely review the results cast in the forms
suitable for our puvpose.

=

In the Newtonian approach the force on a particle is essentially defined as the rate of change of
that particle's momentum referred to an inertial frame, th=% iz  a frame stationary with respect to the
so-called "fixed-stars", The idea is readily extenderd for the case of a rigid body of finite extent by
regarding the body as a collection of “"connected" particles, the distances apart of which remain fixed.

The equations of motion for the body can then be written in terms of its global properties, the mass m

and the inertia tensor, the latter being a second order symmetric tensor. There are now six equations of
motion. Three describe the 139ear motion of the centre of mass C of the body; the remainder describe the
angular motion of the bedy. In vector form, these equations are :

£ o= i (2.1) '
and Ly = BA + méA - éc (2.2)
where [ is the external force, Ly is the external moment about any general point A in space, R, and R, are
respectively the position vectors of C and A in an inertial frame, EA is the vector moment of momentum
about A of the body and the dot notation is used to denote differentiation with respect to time. The
vector product of the second term in equation (2.2) vanishes when the points A and C coincide (among other
cases) and we shall find this choice of moment centre convenient. Equation (2.2) becomes

di

St

. ~C
ke = (2.3)
and the moment of momentum vector is given by
He = 2 - [;c] _ (2.4)

where g is the angular velocity of the body and i{ ] is the inertia tensor referred to the centre of mass C.

These equations are sufficient in principle to determine the motion of a rigid body, but in practice
it is often difficult to decide what constitutes the applied forces and moments. Where the body is in
"free-flight", the forces are gravitational and aerodynamic and the moments are merely aerodynamic.  Since
it is these aerodynamic loads that we seek to determine, a knowledge of the motion and the gravitational
forces should suffice. There are however certain complications. For example the data concerning the
motion are frequently measured in a reference frame fixed with respect to the laboratory, while it is far
more convenient to calculate the components of EC in a frame fixed in the body. Accordingly we need
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equations which provide this coordinate transfer. We shall discyss the analysis of unrestrained motion
in more detail in Section 2.2 where some attention is also given to a description of the aerodynamics of
a freely-flying model.

Where the body is supported the motion is clearly restricted if not entirely eliminated. The
aerodynamic loads are then comparatively well-defined and are reacted by loads in the supports. It is by
measuring these reactive loads that ore hopes to infer the aerndynamic loads. However such Yoads are
usually derived from measurements of the displacements or strains in calibrated 1oad-links which constitute
parts of the support. Of necessity such load-links possess a finite stiftfness, so that some accelerations
must occur and in consequence inertial forces will contribute to the responses of the load-links. These
responses will be of an oscillatory nature because of the spring restraints and the more or less sudden
force input typical of an impulse tunnel. The exact nature of the input force is not of course known, if
only because no one has yet been able to resolve it precisely. In general terms a typical compunent has
the time history sketched in figure 2.1 with some very rapid transients symptomatic of the passage of
shock-waves and rarefactions over the model, followed, hopefully, by a period of quasi-steadiness which
constitutes the test time at. It can be readily appreciated that to follow the important transients,
whichever they are considered to be, a measuring system must have a uniform response cver a frequency band
extending at the very least to include a value of order 1/(at). If static calibration is required this
frequency band must extend down to zero. The designer of a force-balance is therefore faced with the
problem of ensuring that the resonant frequencies of the measuring system and supporting structure do not
compromise its performance.

Two approaches are open to him., In one he aims so to design the measuring system that all the
natural frequencies, or rather, since it is fairly easy to filter a single frequency, all but one of them
lie outside the critical range. 1In the other approach, known as the "acceleration-compensation" or !
"inertia-compensation" technique, the reactive force in the load link and the appropriate component of the
inertia force are separately measured and then combined to yield a component of the aerodynzmic load. In i
order to utilise fully either the direct or the acceleration-compensation technique we need a method for
estimating the natural frequencies of what is a fairly complicated system of flexible linkages and
relatively stiff components. Although these latter parts may be regarded as rigid to a sufficiently good
approximation the Newtonian equations of motion for a rigid body are not particularly convenient for this
estimation because we need to specify in some manner the internal forces exerted by the fiexible Tinkages.

The complication arises because of the increased number of degrees of freedom, and for systems of this kind
the formulation of Lagrange is more convenient.

For a system with n degrees of freedom a set of generalised independeﬁt coordinates 9 (i=1,2, ...n)
is chosen sufficient to describe the configuration of the system, In general the location in space of any
part of the system will ke a function of all the 9; and of the time, Making use of d'Alembert's principle
and of the principle of virtual work a set of n equations is obtained having the form

St aman it |

FE-L.q =0 (2.5)
W;

(i=1,2, .c... 1)
where T is the total kinetic energy of the system and Qi represents a generalised force associated with the
coordinate 9;- In one of the particular variations of these equations of Lagrange Qi is written in terms
of a potential energy function U
L

q;
Such a function will exist for a conservative system. For the purpose of estimating the natural
frequencies of a model-balance-suvpport system, damping may be ignored and the potential energy function is
simply the elastic strain energy in the flexible elements of the system. The n equations of motion are
then derived from

gy, ., (2.7)

i T e D ST |

Q'i = (2'6)

This set of equations leads to n natural frequencies for the system. The real physical system is, in
essence, continuous and as such will have an infinite number of natural frequencies. The problem is to
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represent the real system by one composed of a reasonable number of discrete parts and therefore a
manageable number of degrees of freedom in such a way that several of the Towest natural frequencies are
- given with an accuracy sufficient for design purposes. HWe shail consider this further in Section 2.3
where the discussion centres on the response of spring-mass systems to transient force inputs.

o

In the succeeding section, relevant elements of Sections 2.2 and 2.3 are briefly conjoined in a
discussion of the fundamentals underlying acceleration-compensation techniques. Finally in this Chapter
we shall give some consideration to the aerodynamic interference problems which can arise in making force
measurements, in particular those which result from the presence of supports.

2.2 Aerodynamic data from the analysis of unrestrained motion

The external forces and moments acting on a freely flying body arise in a number of ways, but for
our purposes only those of aerodynamic origin and on occasion the gravitational forces, are significant.
Buoyancy forces are negligible as usual in gasdynamics, and the Coriolis forces arising from the non-
inertial character of the laboratory-fixed coordinate frame are also negligible, since both the angular
velocity of the Earth and the flight velocity of the model relative to the Earth are sml1l, The effects
of gravity are also often small enough to be ignored, but when necessary the trajectory coordinates are
readily corrected to eliminate the motion associated with the free fall. This is only necessary for
flight of extended duration. For example a flight time of ten milliseconds results in a displacement due
to gravity of only about 0.5 mm, the corresponding velocity increment being 0.1 m/s by the end of the test.
However for a flight time of 100 ms the displacement would ba about 50 rm, which clearly needs to be taken
into account, and the maximum velocity increment is about 1 m/s which, 21though small compared with that
of the free stream, is of the same order as that attributable to the aerodynamic loads.
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It is these aerodynamic loads which give flight mechanics its distinctive characler., The
pioneering works of Lanchester (1907, 1908) and Bryan (1911) on the flight stability of aeroplanes and that i
of Fowler and his colleagues (1921, 1922) in ballistic aerodynamics have provided the bases upon which
subsequent workers have built an extensive body of knowledge. Initially the two fields of study grew up
quite separately, the "engineering requirements" in the two cases being rather different. With the advent
of the high speed aeroplane and the poscibility of testing models by firing them along an instrumented
range in the manner used by ballisticians, the two sciences came together. Charters (1955) made a
comparative study which provided among other things a traislation between the two widely diverse notations.
Since then the ballistic range has become an accepted apparatus for testing aerodynamic models and its
technology forms the subject of the recent AGARDograph No. 138 edited by Canning, Seiff and James (1970).

A

The extraction of aerodynamic data from studies of the motion of freely-flying models is not i
confined to tests carried out in enclosed, laboratory ranges. Similar methods are used fcr models flown !
freely in the atmosphere (see, for example Waterfall, 1972 for a recent summary). j

3

Clearly much of the work in these fields is directly relevant to the present study, and in many i
cases we shall find it unnecessary to discuss in detail several aspects which are fully described in the {
AGARDograph mentioned above. There is however, one important respect in which conventional range testing ‘
differs from free-flight testing in a wind-tunnel, and that is in the presence of the "counter-flow",
Chapter 5§ of AGARDograph 138 is concerned with "counter-flow facilities" but the chapter concerned with
the analysis of the motior, Chapter 7, makes no allowance for a counter flow. An earlier review by
Dayman (1966) of free-flight testing in high-speed tunnels is also of djrect interest here, but Dayman's
account is by no means so comprehensive as that of AGARDograph 138.

When a model is allowed to fly more or less freely under the action of the aerodynamic and
gravitational forces and moments, its motion will in general be fairly complicated. We have noted that
measurements of the motion can in principle be used to estimate the aerodynamic loads. Such measurements
may be made by any of a variety of techniques, for example,

(i) on-board accelerometers may be used.

(i1) the position as a function of time in a laboratory-fixed coordinate frame may be determined
using repetitive spark or cine photography of the mode] together with fixed reference lines
within the field of view.
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(ii1) an optical system carried aboard the model may be used to transmit 1ight pulses in
directions fixed relative to the model. When such signals are recorded as tracks on a
stationary film, the position of the model can be determined as & function of time.

If ve suppose that some kind of "ideal linear accelerometer" is available, one which responds oniy
to acceleration along its axis, how, we might ask, in the general case should such accelerometers be placed
to resolve the motion? It is fairly clear that to measure all six components of the motion, three linear
and three angular, will require at least six accelerometers. What is not so obvious is that, except in
special cases, we cannot employ just three, say, when only three components of the motion are required.
Suppose for example cnly the linear motion is required. It is not possible to position three
accelerometers, with their axes mutually orthogonal to another, all at the centre of mass. In consequence
two at least will respond to the angular motion about the centre of mass. To eliminate this component it
is necessary to employ a second accelerometer in each case, as we shall see. Mcreover it is no straight-
forward matter to make use of the extra information so obtained to provide the aerodynamic moments also
because the proportion of the couple contributed by the gyroscopic components of the acceleration depends
upon the inertial properties of the model, which the accelerometers cannot take into account. The
accelerometers are of course in a moving coordinate frame, one which is fixed in the body, and one of the
objects of this section is to list the relations between quantities expressed as components in such a
frame to the same quantities expressed as components in other frares, in particular in the inertial frame
which is the primary postulate of Newtonian mechanics.

2.201 The inertial coordinate system

MNewtonian mechanics makes reference to the momenta of systems in an inertial framework. This
frame is generally taken to coincide with one attached to the "fixed stars", stars which have "no" apparent
general motion with respect to the Earth. A coordinate system attached to the surface of the Earth is of
course in accelerated motion relative to these fixed stars and so is not strictly inertial. The angular
velocity is however small and the resulting Coriolis terms in the equation written in terms of an Earth-
bound frame can be neglected in laboratory ballistic studies. For our purposes no distinction need be
drawn between the inertial frame and a laboratory-fixed coordinate system,

2.202 The laboratory-fixed coordinate system

In describing the motion of a model in free flight we shall use a laboratory-fixed coordinate
system. In most applications this is a right-handed cartesian frame in which the g-axis 1s co-directional
with the gravity vector (of course, a parallel gravity field is assumed within the laboratory) and the
g-axis is downrange. The origin of course is arbitrary, but will usually be taken as the position of tha
centre of mass of the model at the onset of quasi-steady flow. We note in passing that the model will
already be moving by this time as a result of the passage of the starting flow through the test-section.

Dccasionally we shall find it convenient to use a cylindrical coordinate system in which case the
g-axis coincides with the axis of the test-section and is again positive downrange, and the polar
coordinates are R,\ with A = 0 coinciding with the gravity vector. Both frames are illustrated in
figure 2.2.

Measurements are made in these coordinate systems of the position of the centre of mass of the
model and of the angular attitude of the model using a further set of reference axes fixed in the model.
In general the motion of the model is not along the £-axis, so that the centre of mass has velocity
components Ug, Vg and Wg in the laboratory-fixed coordinate frame - in vector notation we shall use ¥p-

In these particular (laboratory-fixed) coordinate frames the flow velocity in the tunnel test-
section assumes a relatively simple form, although when it is non-uniform and time-dependent this may be
of minimal advantage. In any case it is the relative motion between the fluid and the model which
determines the aerodynamic loads and this complicates matters considerably. We shall use Y_ to denote
the velocity vector of the fluid, and U_, V_ and W_ its components in the laboratory-fixed fra.e Ofnc.
Ir general, V_ = V_(&,n,%,t), but in a well-designed tunnel it will be sensibly uniform over the test
region and constant during the test-time,
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2.203 The body-fixed coordinate system

We have several times referred to the usefulness of a system of axes fixed in the body. The
moment of momentum vector ﬂc is conveniently decomposed in this axis system and such a frame is also
needed to define the attitude of the body both to laboratory-fixed axes and to the relative wind. The
particular advantage of body-fixed axes is that the time derivatives of the inertia tensor components
implied by equation 2,3 vanish for such axes. A further advantage is gained by choosing the body-fixed
axes to be principal axes through the centre of mass C, so that the inertia tensor has but three non-zero
elements.

It is conventional in aerodynamics to use a set of cartesian axes in which Cx is the longitudinal
principal axis in the plane of symmetry which almost invariably exists, and is positive tail-to-nose, Cy
is to starboard when the model is the right-way-up and Cz is perpendicuiar to Cxy forming a right-handed
system.

We note immediately that when the model is the "right way up" and the Cxy-plane is horizontal, Cz
ana Oz are co-directional while Cx and Cy are opposi‘ely directed to Ot and On. In describing the
orientation of the axes Cxyz it may be found convenient to use an intermediate set Or'n'y of laboratory-
fixed axes, obtained from Otnz by rotation about Ot thvough 180°,

Because rotations are non-commutative, the order in which they are performed in passing from
0£'n'c to Oxyz must be specified. Of the several conventions we shall adopt the (modified) Eulerian angles
defined as follows (see figure 2.3):

(i) beginning with 0g'n'c rotate (yaw) about Og through an angle yto a new set of axes
Otinlt 5 alternatively we may regard the first rotation as being about Og through an
angle =n+y beginning with Ognz;

(i1) rotate (pitch) about On} through an angle 6 to a new set Oxn}z, ;
(iii) finally rotate (roll) about Ox through an angle ¢ to the final position Oxyz.

The angular velocity components (p, q, r) about the body axes Cx, Cy, Cz respectively, are shown in
figure 2,4, The components of linear velocity of the body relative to the laboratory are denoted by (u,
v, W) in this frame,

2.204 The body-oriented fixed-plane coordinate system

A set of axes which takes advantage of the axial symmetry of a model where it exists is also found
convenient, For an axially symmetric body only the principal axis Cx along the axis of symmetry is
uniquely defined. Any pair of mutually perpendicular axes in the cross-section normal to the axis of
symmetry are principal axes so that a set of axes which do not rotate about Cx with the body remains a set
of principal axes and the ipertial properties referred to these non-rotating axes remain time invariant.

The Eulerian angles y, 6, ¢ still describe the orientation of the model relative to laboratory axes
0g'n'g, but the fixed plane axes Cy' and Cz' are not rolled with the body through’¢ about Cx, and Cy*
remains in its original plane which is normaily horizontal. The fixed-plane, body-oriented axes Cx'y'z'
are jllustrated in figure 2.5.

2.205 Wind axes

It is common practice to specify some of the aerodynamic loads in particular the 1ift and drag, by
reference to the direction of the relative wind vector. For this purpose it is convenient to define a
coordinate frame, with origin at the centre of mass C of the body such that the axis Cx, is directed along
the velocity vector of the body relative to the fluid. The axis Czw then lies in the plane of symmetry
for aeroplane-like bodies, and Cyw forms a right-handed cartesian system. For bodies with axial symmetry,
Czw js arbitrary. The components of angular velocity of this frame relative to the laboratory-fixed
frame are denoted by (pw' 9, rw) about the axes Cxw. Cyw and CZw respectively.

A set of angles (Wh’ 8y ¢") similar to the Eulerian angles of section 2.203 is sometimes used to
define the orientation of these wind axes relative to the laboratory-fixed frame. This system is
{1lustrated in figure 2.6; 0, is effectively the angle of climb.

The linear motion of the body in this coordinate frame is described by the magnitude of the
relative wind velocity vector V and two angles. These two angles are of fundamental importance to the
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aerodysamics and represent the orientation of the body to the wind. If we define 2 velocity potential ¢ ‘
for the flow in the test section, then the components of flow velocity along the body-fixed axes are oy

N and L where the suffix denotes partial differentiation.

The angle of incidence ay is then defined by

W"@z

X

tan a, = ¢~ 7

(2.8)
and the angla of sideslip g by

V-9
sing = ——L (2.9).

For a wing-like budy in somo general attitude defined by Eulerian angles (y,9,¢) the effective
aerodynamic incidence wil} vary considerably over tne wing surface. In situations like this the concept
of a single wing incidance or angle of sideslip has little meaning, and the usefulness of the concept is
really confined to situations in which the angle between the relative wind and the plane Cxz of symmetry
is small.

Some care must also be exercised in using this incidence to describe the aerodynamic loads. Zero
incidence of th: principal axis Cx does not necessarily coincide with the zero-1ift incidence, for exampie.
For this reason we use the suffix x SO that it is quite clear which angle is intended. Of course the
aerodynamic incidence only differs from ay by a constant.

2.206 The relationship between coordinate systems

Frequently it is necessary to represent the components of a vector in more than one coordinate I
system, For example we have already had occasion to refer to the components of the test section flow
velocity vector in both laboratory-fixed and body-fixed coordinate frames, In normal circumstances the
test section flow will be known as the result of a tunnel calibration in terms of U_, V_, W_, the
components in a laboratory-fixed frame. To define the "aerodynamic attitude" we need the components in a
body-fixed frame,

The components of any vector in cne cartesian frame, 0123 say, are related to those of the same
vectcr in a second cartesian frame 01'2'3'by

]
Xy U TURETY X
= = ' = '
X} = |x, =] L Sy L X, [Fii'] {x"} (2.10)
[}
X3 Lapr Lapr Lgy X3

i=1,2,3
where i is the cosine of the angle between 0i and 0i'., (Note that 25 $ Lo in general), In terms
of the Eulerian angles ¥,0,4 the transformation matrices [Lii'] of direction cosines between the coordinate
systems described above are well known. They will be discussed separately together with some useful
approximatiors. Because [Lii'] is simply a matrix of direction cosines it has the property that its
inverse and its transpose are equal, making it unnecessary to write the equations for both the forward and
inverse transformations. 3

The matrix which accomplishes the transformation between the two laboratory-fixed frames Ofng and ]
0g'n'g is very simple:
o] [ o offs 1
ol = o 2 of | n (2.11).
r o o 1| i

The transformation between laboratory-fixed axes 0£'n'; and body-fixed axes Oxyz is given by
[ % coSy COS8 siny cose - sine 4 i
]

y | = |(cosy sine sin¢ - siny cos¢ ) (siny sine sing + cosy cos¢ ) cose sing| [n*

z (cosy sind cos¢ + siny sing } (siny sine cosg - cosy sing ) cose cos¢| |g
] (2.12) i
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while for the transformation from Otnz to Oxyz the transformation matrix of equation (2.12) is post
muitiplied by that of equation (2.11) which has the effect of replacing y by (n+y) in equation (2.12),
so changing the sign of any term containing the angle y.

The transformation from laboratory-fixed axes 0£'n't to body-oriented fixed plane axes Ox'y'z'
is effected by omitting the roll through angle ¢; that is ¢ = 0 is inserted into equation (2.12) giving

x! cosy Cos9 siny cose -sing| | &'
y'l = |~siny cosy 0 n' (2.13).
z' cosy sine siny sine cose| | ¢

We are now in a position to write the stream velocity components °x’ °y and oz along body-fixed axes in
terms of the components along tke laboratory-fixed axes, or more usefully we can transform the components
of the relative wind. Thus

u-¢ U°° -U

X B
L I (3 TV R A (2.14)
W - °z "B - H°°

where [L]B/L is the transformation matrix of equation (2.12). The resulting expressions for the angles

of incidence and of sides1ip are somewhat complicated, and we are led to seek suitable approximations., As
we have remarked already, the concept of sideslip is really only useful for small angles, and we are led to
the "small angle approximation®, In the case when v, 6 and ¢ are all small the matrix for transformation
from laboratory~fixed to body-fixed axes becomes

1 ¢ -]
Wlgp = [v ¥ ¢ (2.15)
6 -¢ 1]
and consistent with this approximation, we find upon expansion of (2.14) that
LA Wp - W,
ax=tan u_°x =0+U:--_UE=6-Y2 (2.16)
and
1 V-9 v, -V
aztan]u—_zf!:—w+u-ﬂ§=-w+y! (2.17)
X ©

the angles vy, and y, defining the direction of the relative wind; they are effectively trajectory angles.
1 2

The quantities (UB’ VB’ HB) and (y,0,¢4) as functions of time are those to be obtained experimentally
from a freely-flying model in the tunnel gas stream. Together with the physical properties of the stream
and the inertial properties of the model, we should be able to determine the aerodynamic forces and moments,
which depend in addition upon such quantities as ay and 8. The aerodynamic loads in the general case are
thus changing during the test period, and to determine them, we need the equations of motion in differential
form.

Before discussing these equations, we shall digress slightly to consider some kinematics relevant
to an instrumented body in unrestrained motion.

2.21 Some kinematic considera.ions relevant to the use of accelerometers

We have remarked earlier that the interpretation of accelerometer records may not always be
straightforward. The difficulty arises because not more than one accelerometer can be placed at the
centre of mass C of the body, and so those components of the acceleration which occur when the body has a
general angular motion are also sensed. The differential operator d/dt of equations (2.1) and (2.3)
refers to rates of change in an inertial frame. It may be decomposed in the form

d
Femra- (2.18)

where the partial derivative is taken with respect to the moving axis system which has an angular velocity
w, Suppose now we consider an accelerometer located in the body at a position A for which the position

s i
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vector is 1y = 31 + y,§ * zpk, relative to the centre of mass, this latter having a position vector R

C
in an inertial frame. The “absolute" position of the accelerometer is then

Ry = Re +1p
and repeated application of equation (2.18) yields the absolute acceleration as

A,
Ry =qpre = B + (6 ary) + anlw ~ 1p) (2.19)

Let us postulate a second accelerometer, its axis aligned with the first, at a position B, such that
rp o= " 1Tg (2.20)

Clearly the inertial acceleration of the centre of mass in the direction of the accelerometer axes will
then be given by half the sum of the outputs, since

Re = 1 (Ry + Rp) (2.21)

and the accelerometers respond to a component of the "absolute" acceleration. The difference in the
outputs certainly eliminates the common motion Bc of the centre of mass, but the angular motion remaining
is somewhat ccmplicated. We have

BA - Ea = &~(rp = rg) +{ w.(ry - rp)le - w¥(ry - 1g) (2.22)

and we wish to resolve the common motion by having rptrpg = 0. Suppose then that the two accelerometers
are place ' with their sensitive axes along the direction Cz in such positions that

Xp=%g =2, =23=0 3 yp=-yp.

This commonly-used arrangement is illustrated in figure 2.7.
We then have

EA - EB = ZYA{(wxwy - G)z)i + (uxj - w?)j + (G)X + wywz)lj} (2.23)*
and for "ideal” accelerometers with no cross-axis sensitivity, the difference in outputs will be
proportional to (&x + wz). We shall see in the following sub-secticn that the coupie about the Cx-axis
which we might expect to be associated with éx and o w, is not simply proportional to the sum. Unless

therefore we have good reason to believe that at least one of these terms in negligible they must be
separately resolved.

One possible way of achieving this is to use a further pair of accelerometers, placed at D and E,
as also shown in figure 2.7, with their sensitive axes along the direction Cy. The sum of their outputs
now yields the component of the common motion along Cy while the difference in the outputs is proportional
to

220 (uywz - G)x}

Combination of the two differential outputs gives vy and o w, senarately, When some initial value bx(O)
is known, the angular acceleration &x(t) may be integrated to give wx(t). However at Teast one further
pair of accelerometers is needed to obtain the component of the common acceleration along Cx and such a
pair could also produce a differential output proportional to (Qy - uxwz) or (wxgy - &z) depending upon
whether they are placed on the Cz-axis or the Cy-axis respectively. Although the information yielded by
either pair taken with the other two pairs at A, B, D and E, would be sufficient, in principle, completely

to determine the motion, the resulting non-linear equations are not easily solved. A further complementary

pair, selected to give (Qy + ”x“z) or (az + mxgy) makes the analysis easier and also provides redundant
information which would be useful for checking the data.

The table below Tists the output combinations of pairs of accelerometers placed symmetrically on
the axes with their sensitive directions in different alignments. It would appear that the commonly-used
arrangement in which the axes of sensitivity are normal to the axis upon which the accelerometer is placed
is not the optimum, Three pairs, each placed symmetrically about C on an axis, with their sensitive axes
aligned with that axis, would yield outputs proportional to (wi + 9;), (9; + u%) and (w§ + ”i)
from which v 15 readily determined.

* We deliberately refrain from using (p, q, r) as the angular velocity components here to avoid the
possible cunfusion between the last component and |r].
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ositions of . Uirection of 1 Sum of outputs Difference of outputs
accelerometer pair sensitive axes proportional to: propnrtional to:
(X, 0, 0) & (~x, 0, 0) Cx £ -2x(u2 + v?)

Cy i{c 2x(d)z + wy_my)

Cz 't;'c -2x(6)y - uw,)
(0, ¥, 0) & (0, -y, 0) Cx & (6, - we)

Cy g -2y(u? + u2)

Cz Ec zY(‘."x + wy“’z)
(0, 0, 2) & (0, 0, -2) Cx & 2z(qy + u,0,)

Cy ne -22(:‘»x - wymz)

2 - 2 4 2
Cz Cc ZZ(ux + u.y

Such an arrangement s illustrated in figure 2.8,

In practice the space available is likely to limit the deployment of accelerometers in either manner;
usually the space available along the Cz axis is restricted, so that a compromise is necessary. Moreover
cross-axis sensitivities may also complicate matters seriously.

There remains the further possibility, which we have not discussed, that angular acceleration can
be measured directly using an "angular accelerometer".

2.22 The equations of motion

We have already noted the two methods of formulating the equations of motion, the Newtonian and the
Lagrangian. The latter possesses certain advantages as regards the equations of angular motion,
particularly when approximations are being made to render them tractable.

The equations of Newton for the motion of a rigid body of invariable mass m are eauations (2.1)
and (2.3), which we repeat for convenience,

F= m§c (2.1)

EC = EC (2.3)
with the moment of momentum vector EC being given by equation (2.4)

He = 2. (Ll (2.4).

The romenta are here referred to an inertial frame, and for a moving frame, the dot notation implics %?
which we have pointed out already, may be decomposed into

d:day. (2.18)

where « is the angular velocity of the moving frame, which is identical with @ only for body-fixed axes.
In the Lagrangian equations of motion,

d T aT
(=) - &£—=-Qq, =0 (2.5)
at a0y ey 1

we need an expression for the total kinetic energy T of the body in free motion. In terms of the angular
velocity components (p, q, r) about the principal axes Cx, Cy, Cz, we may writg

-_--;-m (E;é + ;‘(2: + £8) +%- 1%+ % Iy‘yq2 +—% Izzr2 (2.24)
laboratory-fixed axes being equated with inertial axes, the resulting error being negligibly small.
When the body possesses axial symmefry,

I, =1

Yy zz
and the total kinetic energy is then

A
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Tagm(2+i2+8)4al p2+gl (4412 (2.25)
z cTc TS YT txx z tyy

Using either equation (2.1) or equations (2.5) with &0 ne and % s the generalised coordinates, we
readily obtain the equations describing the linear motion in component form:

Fe = mée 3 Fo= mne 3 F. = Mo + mg (2.26)
Referred to the body-fixed axis system, the forces are

Fx =X+ mg, = m(0 + qw - rv)

Fy =Y +mg =m(V +ru-pw) (2.27)

F,=Z+mg, =m(w + pv - qu)

where (X,Y,Z) are the components of the aerodynamic force alone.

In the majority of experimental free-flight techniques (see Chapter 4} the coordinates (sc. nes ;c)
as functions of time are measured, so that these force components follow directly. Before examining
these forces in terms of the aerodynamics we shall consider the equations for the angular motion,

Using equations (2.3), (2.4) and (2.18) we readily find for the moments about the centre of mass of
the body

L= Ixxp + Izzrwy - lyy qu,
M= Iyyq + Ixxp”z - Izzrwx (2.28)
=10+ Iyu = TPy

For an aeroplane-like configuration, body-fixed axes would be used, in which case w = # = pi + qj + rk and
equations (2.28) simplify to

L
M
N

Ixxp + qr(Izz - Iyy)

Iyyé +pr(l, - 1,,) (2.29)
IZZF + pq(Iyy - L)

It is these equations that should be compared with the accelerometer responses listed in the table of
section 2.21. One can see that in general, the relationship between these responses and the couples are
not simple., However if at least one of the angular velocity components remains zero throughout the
motion, accelerometer pairs placed as described in section 2,21, (symmetrically about the centre of mass,
on a principal axis, with their sensitive axes parallel to one another and normal to that principal axis)
provide a direct measure of the moments about the principal axes.

for axially-symmetric shapes, body-oriented fixed-plane axes are suitable. These deo not rotcte
about Cx = Cx', so that w = 0 + ¢'3"' + r'k' and equations (2.28) reduce for this case to

L' = Ix.x.ﬁ'
M= Iy.y.d' + Ix,x.pr' (2.30)
N = Iylylf" - Ixuxpo'

Because there i5 no preferred direction in the plane Cyz of an axially-symmetric body it is possible to
combine the last two of equations (2.30) into a single equation, giving the "combined motion". This is
conveniently achieved by introducing the complex variable, i and writing

3' =q' +ir' (2.31)

-

and M' = M' + iN* (2.32)

in which case equations (2,30) become

L' =1 4P

ﬁ. ] Ix X 6- o 6- (2.33)

= lyryt i xlxlp)

The commonly-used approximations to the equations ‘for tue angular motion assume small angular
motions of some kind, In order to make such approximations, the equations must first be written in terms
of the angles themselves; the angles ¥, 6 and ¢are suitable in the present case. To carry out this
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exercise we first express the angular velocity components (p, q, r) in terms of these Eulerian angles as

follows:
: p=¢-ysine 1
q=26cos ¢+ ¥ cos 8sin ¢ (2.34)* ;
r=ycos 8cosé=2sing¢

These expressions are derived in most textbooks on dynamics; a "geometric derivation" is
illustrated in figure 2.9. For body-oriented, fixed-plane axes Cx‘y'z', suitable for axially-symmetric
shapes, the angular velocity components (p', q', r') can be obtained from equations /¢.34) simply by
e putting sin ¢ = 0 and cos ¢ = 1, since the axes do not roll with the body which sti11 has the component é.

e g

substituting equations (2.34) into the expression (2.24) for the kinetic energy T, we can then use
the Lagrangian equations (2.5) with ¢, 8, ¢ as the generalised coordinates to give

d . * Y . - . L 3
e (lxx(¢ - ysin o)} + Iyy{ecos¢ + Ycosesing}{esing - Pcosecoss}

+ lzz{icosecos¢ - 8sin¢}{Bcosé + Pcosesing} = Q, =L (2.35a)

%E (Iyycos¢(écos¢ + $cosesing) + Izzsin¢(ésin¢ - jcos0c0s$)} + Ixx(é - ¥sine)y cose
+ Iyy(écos¢ + Jcosesing)ysinasing + Izz(ic050cos¢ - 8sing)¥sinecos¢ = Q
=M cos¢ - N sing
(2.35b)

& {Ixxs1ne(¢s1ne -f + Iyycoses1n¢(ecos¢ + Ycosesing)

+ Izzcosecos¢(6cosecos¢ - 8sing)) = Qw = (M sing + N cos¢) cose (2.35¢)

the first of these being identical to the first of equation (2.29).

These general equations for a rigid body are so complicated that 1ittle can be done with them in
this form. We have drawn attention to them here, merely to make the point that one is unlikely to obtain
useful information from an experiment in which a freely flying model so behaves that no approximations to
these equations can be justified. In practice some care is taken to ensure that the motion is naturally
limited in some way, and we shall next proceed to a discussion of some special cases of interest.

2.2201 Planar wotion

| Motion confired to one plane is conceptually the simplest. For this reason the most frequently
performed free-flight experiments are designed to achieve planar motion in the 0fg-plane. In this case
v is identically zero, and there is no rolling motion; é = 0. A single degree of rotational freedom
remains, and equation (2.35b) simplifies to

g =M .36
lyye (2.36)

2,2202 Small angular motion

IT we assume that the angular displacements, velocities and accelerations are all small, the left-
hand sides of equations (2.35) become completely uncoupled:

!
s
%
4
:

\ Lt = L
o =M 2.37 ‘
lyy? : (2.37) :
Ib =N ‘

3 These linearised equations are the ones most commonly used as a first approximation. The first
of these equations does not depend upon ¢ remaining smail, and in the absence of an externally applied
rolling moment, it may be integrated to give ¢ as a linear function of time. 'When however this is 1
substituted into equations (2.35b, c) with the other angles and rates small, these remain coupled equations
with variable coefficients and are not easily handled.

* These equations also apply for wind axes; that is, 3 suffix w San be added to the angles and
angular rates.
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2.2203 Bodies with axial symmetry

Bodies with axial symmetry frequently arise in practice; cones, cone-cylinders, hemisphere-
cylinders and several standard test models such as AGARD HB-2, are used for comparison purposes when
investigating new measuring techniques and new wind-tunnels. The equations of motion for such shapes are
therefore of special interest. Unfortunately the mass-geometric constraint does not help to simplify the
equations of angular motion in any significant manrer, and equations (2.33) with

qQ' =6 (2.38)
and r' = ycose

must be linearised. We then have

Lt = zx.x.é = L8 . (2.39)
> .
and M' = Iy'y'¢ - 1(Ix.x.p)$
where

¥=0+iy (2.40)
The rorce equation in the cross-section plane can likewise be written

(Y* +14Z') + m(gy, + igz.) =m{¢' +iw' ~ iu'(q' + ir')}
which upon linearisation becomes

Y' o+ 42" = m{(B' + ia') - i(q" + ir')} - m(gy. + 19,4} (2.41)

We have seer that to simplify the kinematic aspects of the equations of motion, drastic assumptions are
necessary. It remains to consider the other sides of the equations of motion, that is the forces and
moments, This we shall now proceed to do; we shall find that similar approximations are needed to
represent the aerodynamics in a consistent manner.

2.221 The aerodynamic forces and moments Ul

The aerodynamic forces and moments which act on a body in a free-flight test in a wind-tunnel are
basically unsteady. In a static test, the 1ift on a wing, for example, is a function of the state of
the flow and the incidence and sideslip angle of the wing. In the unsteady situation these independent
variables are time-dependent, and because the 1ift on a wing is associated with the circulation around it,
which in turn depends on the establishment of particular conditions near the trailing edge, this 1ift will
depend not only on the instantrneous value of incidence, but also on its past history. This functional
relation may be written in the form (Etkin, 1972)

L(t) = L{a(r)}, ~w <t <t (2.42)

Similar relations may be written for the other independent variables and on the assumption that the effects
are simply additive, that is, the system is linear - an exact formulation may be made which results in
integro-differential equations of motion. Such equations are not easy to handle, and an alternative
approach using transfer functions can be used which results in algebraic equations. However these methods,
though exact, are restricted by the assumption of linear aerodynamics, and it is far from clear how they
may be developed to include non-linear effects.

The classical approach, initiated by Bryan (1911) is less soundly based, both mathematically and
physically, but non-linearities can be included in an approximate fashion. Its chief justification is
perhaps that it works in a very wide variety of situations, and because free-flight testing often involves
non-linear effects, we shall confine our discussion tn this classical approach. The relation between
the linearised classical theory and the more exact formulations is well discussed by Etkin (1972), to
whom refereince may be made for a more complete account of what follows.

The assumption which is at the heart of Bryan's theory is that when a{x) is a weli-behaved analytic
function in the neighbourhood of r = t, it may be expanded as a Taylor series about this point so that
equation (2.42) can be replaced by

L(t) = L{ay &s Gy veuee)
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the explicit time-dependence being thereby removed. A further series expansion gives the incremental
1ift as

2
al(t) = LaAu + %Laa(Aa) + ..

. o1 .
+L88 + 5 Lo, (05)% 4 Lo

LN
- ‘4
+ Lua(Au)(Au) + .. (2.43) 4
where 3
_aL .
x =5 n etc. (2.44)
are the aerodynamic derivatives which the tests are designed to determine. In the vast majority of cases i

it has been found sufficient to retain one or two terms only of equation (2.43); thus ]
aL(t) = L da + Load (2.45)

is the main result of Bryan's method, and it is assumed to hold even when a(t) is not an analytic function.
Obviousiy the effects of non-linearities can be taken into account by including more terms of the expansion

(2.43) or by regarding the derivatives, such as La, as being themselves functions of the differentiation
parameter, in this case a.

In this way an incremental force or moment component is written

canb o oo et i

oF; = FaAu + F&A& + FBAB + FBAB + F,oV + F ap + F aq + FrAr L SN (2.46)

p q

in the linear approximation, the term in aV accounting for changes in the relative wind speed. A number
of simplifications are possible consequent upon the symmetry which usually exists for aerodynamic models.
For aeroplane-like shapes, the Cxz-plane is usually a plane of symmetry, asymmetric control configuration
being handled by the addition of a term AFC to the right-hand side of equation (2.46). In symmetric
flight, the lateral force and moment components (Y, L, N) are identically zero when the plane of symmetry
is vertical, in which case 8, p and r are all zero. The derivatives of these lateral components with
respect to the longitudinal variables, V, a, & and q are therefore zero. In addition the derivatives of
the longitudinal components (X, Z, M) with respect to the asymmetric motion are usually negligibly small,
as are all those derivatives with respect to & and § except Za and M&‘ The derivative X_ is also usually

q
neglected. .

JEC )

With axially-symmetric or equivalent shapes* a number of further simplifications are possible
because the Cy and Cz directions are indistinguishable. Thus MQ and NB are of equal magnitude, but J
opposite sign.

A

3

Consistent with linearisation, the increments in the state variables which appear on the right- i

hand side of equation (2.46) must be treated as small perturbations about some equilibrium value., For |
!

all the state variables except incidence a and the relative wind speed V, this equiiibrium value is zero,
5o the symbol 4 is not needed.

Although the use of dimensional rather than dimensionless quantities is becoming more common, %
aerodynamic data, derivatives included are conveniently expressed in dimensionless form, Expressions
such as equation (2.46) can be readily written in dimensionless form using 1pV2S as the unit force, 3pV2ST J
or 3pV2Sb as the unit coup1e+ and V/c or V/b for the angular rates, but the question naturally arises as
to which velocity V should be used. The quantity of aerodynamic significance is the magnitude of the
relative velocity vector, but in free-flight testing in wind-tunnels this varias throughout the test. /
We have noted that this variation can arice not only as a result of the motion of the model but also from
non-uniformities in the test stieam consequent upon the use of a conical nozzle. In this connection two
remarks are in order. In the first place, the useful motion of the model is confined to the viewing area
which is not likely to exceed say 0.5 m in diameter. If we suppose the model to traverse this in a fest

* Bodies with trigonal symmetry together with mirror symmetry may be regarded as axially-symmetric so far
as linear aerodynamics is concerned (Maple & Synge, 1949).

+ For aeroplane-like shzpes the mean chord ¢ is used with the pitching romponents M, q, & and the wing span
b with the iateral components L, Ii, 8, p, r. For axially symmetric bodies it is more convenient to
use a single reference length,




period of about 10 ms, starting from rest, it reaches a speed of about 100 m/s which is a few per cent of
the typical stream velocity in a hypersonic impulse tunnel. To regard the magnitude of the relative wind
velocity as constant in spite of this is not likely to result in serious errors. On the other hand the
presence of non-uniformities in the test stream, particularly “"conicity" of the flow, is less easily
dismissed. To achieve as realistic a Reynolds number simulation as possible models would normally occupy
as large a fraction of the test section as is consistent with avoiding tunnel interference effects.
Defining the relative wind velocity, even for a stationary model, is difficult when the flow is source-
like. When the model moves off-axis sideways, spurious lateral loads will arise on winged or wing-like
bodies, which although they might be "calculable", have little relevance to the measurement of aerodynamic
derivatives. It would seem therefore desirable either that free-flight testing be confined to streams
with minimal non-uniformity, or that only thc simplest of such tests, such as drag measurement, be conducted
in conical flows. ’

We shall therefore suppose that the free-stream in the test-section is given by
(U, V_, W)=(u,0,0) | (2.47)

that is, it is parallel to the tunnel axis. The velocity potential introduced in Section 2.203 is then
simply

¢=U%E (2.48)
and equations (2.16) and (2.17) for the angles of incidence and sideslip become
M8
GX=O+W=O+Y2 (2.49)
and
Vg
8='¢"U—.UE="\P'YI (2.50)

where the trajectory angles v, and y, are clearly very small. It should be noted that v, and y, define
the trajectory relative to the stream and not that in a laboratory-fixed frqpe which is the trajectory
usually measured. The incidence oy differs from the aerodynamic incidence only by a constant.

The results of this linearised approach to the aerodynamics are conveniently summarised separately
for aeroplane-like shapes and axially symmetric shapes, e shall include expansions for the 1ift and
drag coefficients (these forces being referred to wind axes) as well as expressions for the components
referred to body-axes. As usual the drag‘D is defined as the component of force along the direction of
the relative wind vector. The 1ift L is normal both to this wind and the body aris Cy for aeroplane-like
configurations, but for axially-symmetric shapes it is so defined that the side force is zero.

Conventionally the symbol L is used for both 1ift and rolling moment, but the context always make
clear which is intended. In coefficient form, CL is used for the 1ift coefficient and Cz for the rolling
moment coefficient, consistent with the use of lower case subscripts for moment coefficients.

The derivatives with respect to velocity have been omitted since they are usually small. They
can become significant in transonic flows, but this is of no concern in a hypersonic impulse-tunnel test.
Where ambiguity might arise we distinguish dimensionless quantities from dimensional quantities by the use
of a circumflex ~ over the former, though we do not pursue this notation into the suffices indicating
partial differentiation. We therefore define, for example,

aC

4

C =
ﬂ'lq 3

(2.51)

L>

2,2211 Aeroplane-like bodies

For bodies with mirror symmetry about the plane Cxz, the expressions for aerodynamic force and
moment coefficients, referred to body-axes, assume the form

waa s b A
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Cy = Cy + Cy da +{cx& + Cy )
() o q
Co=Cy B+ECy P +Cy i+ (Cyd+aCy) '
i A A Y, Y Y, i
. : - g
CZ = CZ + CZ da + Cz.a + cz I
0 [} a i
¢ =c c C. #+(C, 3 +aC ) (2.52). !
=C, g+C p +C r+{C B+a (
2 28 -!.p Zr 28 R'C
Cm = Cm + Cm Aa + Cm &+ cm q

o (" & q
C =C 8+C p+¢C F+(c,§+ac }
n Ng np n. n e
The quantities in brackets are normally negligible, but may be included where necessary. In this
connection we have included the components, such as Acn ,» which arise from an activation of control
surfaces in the lateral force and moment coefficients on]y, since for free-flight tests in an impulse

tunnel these control surfaces will be pre-set and their contributions to the longitudinal components may
be included in the "trim" values Cxq Czo and Cp, .

The 1ift and drag coefficients are written in terms of their own expansions as
C, =C +C sa+C &+C d (2.53)
L L, L, Ls Lq
and .
+C, da + {C, &+ Cp q)
D, D, D, Dq
to the same order, Note that we have not adopted the practice of some writers in which the X and Z

components of force are pre-fixed by a negative sign so as to accord with the "known" physical situation.

Thus at small incidence cx = - CD and cZ = - CL.

2.2212 Axially-symmetric (or equivalent) bodies

With axially symmetric bodies the spin rate p can be large; indeed spin is often used to stabilise
a body along a particular flight trajectory. In such circumstances the Magnus forces and moments may be
significant. These Magnus effects arise when the body possesses a component of spin about an axis normal
to the relative wind. Since the spin axis Cx is usually at a small angle ap to the relative wind, where

tanzaR = tanZa + tanZg (2.54)

the effects are of quadratic form in the state variables. However the magnitude of the spin rate p may
make these terms comparable with the linear, first order terms. We shall therefore include the Magnus

terms for completeness, though to the present writer's knowledge no tests on a deliberately spun model have
yet been conducted in a hypersonic impulse tunnel.

For bodies with axial symmetry then, the force and moment coefficients are (Charters, 1955)

C,=C, +C, p2
X T Kp2

¢, =C, 8+ é -C,r=¢, (ap)-C . (&5) + C, (4p) + AL
Y Za s Zq Zﬁp ZBp er Yc

C,=C,a+C,a+C, d+C, (89)+C, (BP)+C, (FP) +aC
27Ty Ty T Ty g Zep “rp % (2.55).
C,=C, p+aC,
% zp c
C=Ca+C:+C G+C (89 + G, (8D) +C, (7) +4C
m m, q Bp Top mrp m.
L =-C 6-C B4C F+C (of) +C (3D) - C () +4C
n ma m& mq msp gp mrp nc
Again terms such as ACY represent the effects of pre-set controls.
. !
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It will bYe noticed that advantage has been taken of the axial syrmetry to replace the Y and N
derivatives by t.e equivalent Z and M derivatives (Charters, 1955), This is justifiable in the
dimensionless form of the equations only if the same reference length is used to reduce both the
Tongitudinal and lateral components (see footnote on page 19). It is irmaterial whether the axial length
or a diameter of the body is used provided consistency is maintained, but any data published should make it
clear which convention has been adopted.

As one might expect the symmetry alse allows the replacement of the force components Y and Z by a
single component normal to the axis of symmetry. Introducing the complex number i = /=T, we write upon
rotation to fixed-plane coordinates:

Cor +iCq0 = (C, +C, P)(8' + ia') + (C, P +iC, }(§" + if")
Y A z, " g Zp Z,

£ (C, +3C, P)(B' + 14") + a(Cy + iCy ) (2.56).
Z& Zép Yc Z c
Since for axially-syrretric bodies the 1ift is defined as the force component normal to the relative wind
such that no side force exists, equation (2.56) gives the lift coefficient to first order, directly.
Again to first order, the drag coefficient is given by

C,=C C 2 2.57).
p=Co,* npz(ﬁ) (2.57)

The last pair of equations (2.55) may also be combined and written in terms of the complex variables
(8" + ia') and (q' + ir') as follows:

(€0 - iC) = - (C + € ) = -(C, +iC P)(B* + ia') - (C, P+ ic, MGt + i)
« (3]1] rp q

-(C, +1iC,, B)(B' +1a') + a(C - iC.) (2.58).
& 8 c c

(] P

Note that with Magnus forces present the resultant force component in the plane normal to the axis of
symmetry does not lie in the plane containing the effective incidence KR’ which in this small angle

approximation is simply
ap = 8+ ia’
(2.59).
so that

2 _ 12 12
op = a + 8

2.222 The differential equations of motion in dimensionless form

We are now in a position to complete the differential equations of motion. However we have
gxpzessed the aerodynamic loads in the form of dimensionless coefficients and the state variables (a, 8,
&, 8, P, 4, *) are also in dinensionless form. The dynamic terms which appear in equations (2.27) and
(2.28) or any of the subsequent equivalent forms or approximations to them must first also be put into a
consistent form. There is no especial difficulty about this, but it is necessary to choose the unit of
time t which appears in the differential operator 9;. Strictly of course we have units of time already
defined, used to render the angular rates dirensionfess. Unfortunately we have two units of time for
aeroplane-like bodies, ¢/V and b/V, and although the small-disturbance approximation uncouples the lateral
and longitudinal motions so that it is perfectly legitimate to have separate time scales for the two, in
free flight tests this is not particularly convenient. We shall th-refore choose a single time scale, and
define, for aeroplane~like bodies

t = tye (2.60)

so that the aspect ratio R will appear in some equations. No ambiguities arise for axially-symmetric
shapes, since we use a single length scale.

We also define

u :‘;‘_c (2.61)
and
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for all three principal moments of inertia. Equations (2.27) then become

Cy = €, sin0 = u(Dd + W - (FI/R))

u(D¥ + (FG - fW)/MR)) (2.62)

CY + CN cososing

C, + C, cosecosy = u(DF + (Bv)/M - §i)

where

_ 2ng
%= e (2.63)

and the operator D = d/dt.
A similar set of equations may also be written for the 1ift, drag and side force coefficients using

velocity components referred to the wind axes. The latter however are not so directly available from the
measured data. Accordingly it would seem appropriate to utilise the relations

cx c05axcose - cos«x51ne - §iha, - CD
cY = sing cosg 0 - cS (2.64)
CZ s1naxcose - sina,sing cosa, - CL

to rewrite equations (2.62) as a set of simultaneous equations in CD, cL and CS. In principle Cu is
known and all the other quantities are measured funclions of time, ay and g being determined using their
definitions, equations (2.8) and (2.9).

Thus we can find CL(t), CD(t), Cs(t) corresponding to the particular combination of state
parameters {a(t), 8(t), p(t), q(t), r(t)} which happen to arise in each free-flight test., Such information
is not especially useful. What we should like to determine is how each of the coefficients varies vhen
only one state variable changes; in other words we seek aerodynamic derivatives such as CL and CLq.

Before considering this problem we must complete the set of dimensionless equations with the three
describing the angular motion. A little care must be exercised over the inertia terms involving the rates
of change of angular velocity, since the dimensionless forms of (p, q, r) include the velocity V in their
definition, and in the general case V is a variable. Thus

. d 5 2 ..
p=a%=V9—(§—v-)=x—E{Dp+p%—}

t]

and equations (2.29) take the form

s s DY s an
C, = lxx{Dp +p=—}+ (Izz I .1qr

?
- n ~ DY " ”
Iyy{mz}{Dq +q -v——) + (IXX -1

& na . a DR _— s
1,0 +F \7—} + (Iyy fxx)pq

~

or (2.65).

(]
n

2z

(g
n

Similar remarks may be made about these equations as were made about those for the force coefficients.

The difficulties are resolved by linearisation. The aerodynamic coefficients then appear in terms
of the required derivatives and the state variables. Together with the kinematic relations, equations
(2.16), (2.17) and (2.34), linearised and cast into dimensionless form, we then have a set of simultaneous
differential equations in which the aerodynamic derivatives appear as coefficients. Again it is convenient
to list the results for aeroplane-like and axially symmetric configurations separately.

2.2221 The linearised equations for aeroplane-like shapes

Upon linearisation the six equations of motion fall naturally into two groups of three, one group
defining the longitudinal or symmetric motion, the other the lateral motion. In matrix form, we have for
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the longitudinal motion . 3
i ] 1 CH [ cDo
1 -
DA 0 'u'(cDa cLo) 0 = v -5
L G, ch T u 'R :
Da 0 ¢ ] T +u 01 e T +9
L. + L& L.
: ¢ @ \ 1
+ = !
N c ) c . cm&(cL - u) ) ¢, (Cy - cLo) , \é
InyR m 0 {~C—-+—; - Cm } { T - Cm } 0 q (Cm + _C—"_"'—ll__-_’ P
e L. q 0 L,
a a a 3
] | De 0 0 -1 0 8] | 0 ] :
(2.66)
g where the expansion of the aerodynamic coefficients has been taken about @, = 0, so that we can write
La a, = Aa = a, and the values CL, CD’ and C_ and all the derivatives are evaluated at a, = 0.
o Do m X
3 The quantity u is of the order of the ratio of density of the model to density of the gas stream.
: Consequently both C; and C, are negligible in comparison with it, and thesve equations can be simplified ;
1 considerably in pracgicﬂ cases. Thus ‘ 3
-1 T 1T YT " ;
. : ¢l ®n, ' ‘
bu 0 =(Cy - € ) 0 L -l ( 1
L™ 0 " ¥ I 3
4 %G,
Da 0 =2 -1 0 a —_—
; + ¥ = u
)
% 0 cma -1 (c ¢ ) 0 a cmO ;‘
- \ + q = X
2 2 M, m 2 i
vy R fyy m2 "y q Iy R %.
« De 0 0 -1 0 0 0
L L 4L L - (2.66a).
i
The equations for the lateral motion are
C ] [ C c c C, 1T 7 aC 1
Y Y Y W Y
8 _e _r_ Ll . —c .
Ds " " = u 8 m 1
c c c aC
2 [3 % )
0p £ _L L 0 p :.._‘E
Ixx Ixx Ixx IK/( 4
= +
c c c aC i
n n n n i
F P £ _2 - 0 r —=£ :
s Iz l22 122 i
1 :
0s 0 — 0 0 é 0 X
L) L R JLL L 4 (2.67). !

! 2.2222 The equations for axially-symmetric spinning bodies

For axially-symmetric bodies the equations are conveniently grouped inte a pair which describe the
motion along and about the ax.: Cx' of symmetry and a second complex pair which specify the motion “in"
the cross-section plane Cy'z' w.ich does not rotate with body. As we have seen, it is possible to define
two complex state variables

KR = g' + ia’' (2.59)
and 0 =q" + i (2.68)
when the disturbances are all small, the latter being the dimensionless form of equation (2.31). In
terms of these the equations are
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(2.70)
and
D3 a a 1 b
[ ‘R i 11 12 ‘R . 1 2.7)
l o' S PYY ¢ b,
where
C, +iC, p
a4 = i i
(u - cz =i cz p) !
& gp i
C, p+i(u+C,)
2, = —r fq |
12 . A ,
(w=¢C; =1C; P)
a gp !
i
: . (€, B-1C )C; +iC B)
a, = ——{(C, P-1C )+ EP . Bp ;
Iy'y! 8p a (w=C, =G, P) i
& &p (2.72). z
a =

1 A . A . T
—f{a,. (C p-iC )+ (C =-iC p)+il p}
22 12 me my "h x'x'

y'y' "rp

aCyy + i(8C,, + C,)
v ze "

b, =
1 - ~
(w-¢ =-1iC, p)
Z& ZBP
o 1 A .
b2 = i_. {(cm- p~i Cm.)bl + ACm. + 13 Cn.}
y'y 8p Q c C

It is important to note that the control forces and moments, Cy (where K =Y, Z, m, nj are referred to
fixed-plane axes in these equations. In other words, for controls attached to the body, tie control
forces spin at the rate p relative to the frame Cy'z'. They may be written

. X ipt
(aCy, + 1 8C,0) = (ac, #+ i aC, )e'P
Ye Z¢ Ye Z
and - (2.73)
(aC_, +14C,) = (aC_ +1i aC_)e'P
Me ne Me e

where the complex amplitudes on the right-hand sides are constant and will of course normally be small if
the conditions of axial symmetry are to be maintained. Again advantage can be taken of the fact that p
is large in comparison with the terms with which it is bracketed.

Equations (2.66), (2.67) and (2.69) to (2.72) are rather forbidding in appearance in spite of the
approximations which have been made in deriving them. We feel however that by inciuding as many terms as
we can at this stage, we shall be better able to see just what assumptions are being made when free-flight
data are analysed. Free-flight experiments are normally designed so that the simplest possible motion
consistent with the required derivatives ensues. Frequently the motion departs to some extent from that
intended. For example an experiment to measure the position of the centre of pressure of a model requires
the model to be so balanced that it fly at constant incidence. This will normally require several
individual tests in which the position of the centre of mass is adjusted from test to test (Pennelegion,
Cash & Shilling, 1967). Questions naturally arise as to whether any useful aerodynamic data can be
obtained from the preliminary, "abcrtiv." tests in which the incidence varies, and if so how these data
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are to be extracted from the measurements. This is among the problems we shall consider briefiy in the
following section.

2.23  The analysis of experimental data

Free-flight testing has always been a major component of ballistics research and during the last
thirty years or so the techniques have become very sophisticated. Extraordinarily detailed information
has been obtained by launching models from light-gas guns along instrumented ranges in which, in many cases,
the pressure may be adjusted from sub-atmospheric to super-atmospheric, The motion of the model along the
range is usually determined by timing and photographing its passage of a number of carefully spaced
measuring stations. In this way the trajectory coordinates and model attitude are found as functions of
time, and from these data a great deal of aerodynamic knowledge has been gained. The whole technology has
been recently reviewed in AGARDograph 138 (Canning, Seiff & James, 1970), One might expect much of this
to be fairly directly applicable to flight-testing in wind-tunnels and so of course it is, The
experimental procedures, particularly the ways in which measurements are made, are largely common to both -
but there are essential differences.

The 'counterflow' present in the wind-tunnel considerably modifies the motion referred to a
laboratory-fixed coordinate system. It has also some bearing on the way the equations of motion are
formulated, as we have already seen. The results of these differences are twofold. In the first place,
whereas in the range data are collected at a number of discrete stations, from which the changes in the
motion must be inferred, in the tunnel all the data are obtained at a singl. station, and it is the changes
in the trajectory relative to the stream that are measured. The different primary data and the slightly
different equations of motion mean that the analytic methods developed for handling ballistic range data
must be modified to some extent when dealing with other than the simplest motions.

Because so little experience has been reported it is difficult to discuss the adaptation of any of
these analytic methods in detail, since the 'efficiency' of modified methods using the different
measurements will remain uncertain until they have been tried. In these circumstances it is felt that
in many cases little more can be done than draw attention to some of the methods that might be adapted and
some of the principles underlying them.

One of the difficulties often encountered in the free flight testing of models in wind-tunnels, is
the relative paucity of data, a particularly acute problem in short duration experiments where in some cases
measurements can be made at perhaps only ten or so 'instants' - this would correspond to ten measuring
stations along the ranges. Such measurements givae both the angular and linear positions at each instant,
but the forces and moments are related to the accelerations. The double differentiation neceded to derive
the accelerations can introduce large errors and the transformation to a more convenient coordinate frame
than the laboratory-fixed one can also introduce further errors since the measured angles must be used.

One obvious way of diminishing these errors is to 'smooth' the primary data by a curve-fitting procedure
and then carry out the differentiation and coordinate transformation using the fitted curves. However the
aim is to determine the aerodynamic coefficients relevant to the test, and a somewhat different approach,
practical since the advent of the high speed digital computer, has been found more sensitive., From the
test one first gauges which state parameters are important and the equations of motion are written in terms
of these., Values of therelevant aerodynamic coefficients are then assumed and the equations of motion
are integrated numerically to obtain position data equivalent to those actually measured, The aerodynamic
coefficients are then adjusted until a good fit to the measurements is obtained. It is not obvious that
this method will provide a unique solution to the problem in the general case when the motion is complicated,
particularly as the measurements are few, However in many cases restrictions are effectively placed on
the method because only the equations corresponding to small disturbances can be easily integrated.

Some remarks have already been made concerning the interpretation of accelerometer records, In this
section we discuss only ihe handling of position vs. time data. The experimental techniques are discussed
in Chapter 4, The discussion is cssentially in two parts. In the first we summarise briefly how the raw
information - usually in the form of photograbhs ~ is converted into position coordinates as a function of
time. In the second part, methods of estimating aeiodynamic derivatives are reviewed.

In principle the experimental records must previde sufficient information to enable six coordinates
to be determined as functions of time, the coordinates (ec. nes ;C) of the centre of mass of the model
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and the Eulerian angles (y, 8, ¢}, In many cases of course experiments may be so designed that some of
these should remain unchanged during the test; for example a truly axially symmetric model should not
roll or translate normal to its plane of incidence so long as there is no initial spin. However it may
be necessary to provide experimental checks that assumptions ¢/ this nature are justified.

Where standard shadowgraph methods are used two photographs from different angles must be taken at
each instant in the general case; usually orthogonal views are most convenient, one vertical and one
horizontal, but other stereoscopic systems are possible. An alternative, optical telemetry, system has
been described by Requardt & Kabelitz (1971). Although the information is recorded photographically in
this case also, we consider it separately in sub-section 2.232. First we look briefly at conventional
shadowgraph methods.

2.231 The derivation of position and attitude from photographic records

Photographic recording of a model in free flight is a standard measuring technique of ballistic
range technology. As such it has been excellently reviewed by James and his colleagues (1970) at NASA-Ames
in AGARDograph 138 (Chapter 6). We shall not attempt a summary of their article here, but content
ourselves with an account of the factors which it may be necessary to record. The potential user of this
method is recommended to their article for further details.

Obtaining the position of the model at any instant necessarily implies the existence of a reference
frame. Where cinephotogranky is used, indexing from one frame to another is necessary and this is
conveniently provided by including reference lines in the field of visw, For flows of relatively long
duration, a large number of frames can be obtained with modern high speed cameras, but the images are
necessarily small. Timing marks must also be provided since the framing rate is rarely reliably constant,
In shock-tunnels, where the flow duration is frequently less than 10 ms, multiple spark-exposures of a
single photographic plate showing successive images of the model overlaid, are more practical., Here the
relative position from one instant to another can be obtained more directly, but some reference is needed
to specify the vertical and the downrange directions. Such references are readily provided by plumb lines
and tautly stretched wires, positioned outside the flow, or by appropriately aligned straight edges within
the freld of view., Single references in each direction are sufficient when each light beam is a well-
collimated, parallel beam exactly normal to the flow direction. The uncertainty can be reduced by
providing pairs of wires in each direction on both the near and far sides of the flow. They must of course
be staggered so that one pair does not occult the other. The known relative positions of these wires and
their images in the plane of the photographic plate not only provide evidence on how well the light beam is
aligned and collimated but also give the optical magnification of the system, The uniformity of this
optical magnification which may be affected by spherical aberrations of the mirrors or off-axis light
sources can be tested by photographing a grid spanning the test section prior to flight tests.

Errors may also arise because of refraction of the light beam whep it is not pzrpendicular to the
windows - in fact where the walls of the test-section are divergent to allow for boundary layer growth,
systematic errors due to refraction must be taken into account.

Occasionally conical projection systems are used instead of parallel beams. Such systems produce
apparent distortions of the shape of the model and of course the Eulerian angles cannot be obtained quite
so directly as they can with the carefully aligned collimated system.

Depending upon the shape of the model the roll attitude may or may not be deducible from the
orthogonal views implied above. When the model is axially symmetric some reference marks must be attached
to the model if the roll attitude is to be determined. Pins projecting from the base are commonly used.
Frequently however such positive reference lines in the model are needed merely to define its position
coordinates and the pitch and yaw angles (6, ). The axis of an axially-symmetric model is clearly
defined in a shadowgraph and models with sharply-pointed noses and cylindrical portions present few
problems, Some shapes however will clearly present difficulties (see Seiff & Wilkins, 1961 for & good
example) and a base~pin defining the longitudinal principal axis can be of great assistance. When this is
possible the same reference point or points should be used in making measurements pertinent to a single
flight. Not only are systematic distortions due to refraction and diffraction compensated automatically;
the computations nceded to obtain (EC’ nes Coo ¥, 0, ¢) are then standardised and more readily programmed
for a digital computer.
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Details of the working formulae needed for any particulan optical systen are simply obtained from
the geometry of that system, Relations for collimated and conical projection systems are given by James
and others {1970) in the review mentionad above.

2,232 Position and attitude from an aptical telemetry system

Requardt & Kabelitz (1971) have described an optical telemetry system for use in free flight tests
in the piston driven gun tunnel at DFVLR, Porz-Wahn, Further practical details of the system are given
in Chapter 4, Here it is sufficient to say that a single flashing light source carried in the model
produces three focussed beams in a cross-section plane (parallel to the Cyz-plane) which are spaced 120°
apart about the roll axis, see figure 2,10, A photographic film is wrapped around the test section
forminc a circularly cylindrical surface coaxial with the test section, With the model in flight and the
light flashing at a known frequency, three tracks of light spots are recorded on the film. So long as the
corresponding spots on each track can be identified, the six coordinates, two for each spot on the developed
film, are sufficient to determine the six coordinates (zc, nes Sge ¥, 6, ¢) defining the position and
attitude of the model.

Suppose that two lines are marked on the film, one along a generator (A = 0, R = a) the other along
the circle (¢ = 0, R = a), When the cylindrical film is unwrapped these lines form a set of Cartesian
axes and the position of any light spot image is given by its coordinates (g, ax). The cartesian
coordinates in (g, n, g) space follow immediately since (see figure 2.11)

£E=¢t
n = - asinx (2.74)
T = acosi

Having identified the three ccrresponding images formed by the same flash, we seek that point S
which lies in the plane of the three images and at which the angle subtended by any two of the images is
2n/3. MWe first define unit vectors (i", j", k") in the Taboratory fixed frame Ogng, and label each image
by a suffix 122 OF Then the condition that S and the images Jl, J2 and J3 lie in the same plane is

2 3 -5 - -+ .
$d, . (99,4 9,9,) =0
or (&g = €))A) + ng = n))A, + (g - 5,)A; = 0 (2.75)

where

Ap=ng = meg=gy) - (5= 5)ng - m))
2 = (8 = 55y = &) (g, - 6))(z5 - 3)) (2.76)

Ay= (g, =€)y =n) = (n, - n)e, - ¢)

-3
H

We note *that the direction of the longitudinal axis Cx of the model, which is normal to the plane
J J,.J., is given by

1¥2%3
A;i' + Azi" + AaE"

(2.77)
2 2 2,3
(Al + A2 + A3]
In addition we have
- - > et -+ >
. 2n 1 (SJI).(SJZ) (SJI).(SJa) (SJ2).(SJ3) (2.78)
[ol4) = - = = - R
3 z zs-‘11)1532) (531)(533’ 15325(533)
and
SIp = (5, = 8g)i" # (ny = mg)i* + (g, - gg)k" (2.79)

where p = 1, 2, 3.
though one of equations (2.78) is redundant if (2,75) is used. Since equation (2.75) is linear in the
unknowns Eg» Mg and Lg while equ>cions (2.78) are not, the solution is somewhat simplified by using it,
We thus have
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(85 = &))A, + (ng = n))R, + (zg = ¢))Ay = 0

: (&) - &)E, - &) + (n) - ngd{n, - ng) + (5, - )z, - &) L
. (g, - £g)% + (n) = ng)? + (g; = t5)2M(E, = &g)2 + (n, = ng)? + (3, = 5c)?) 2 (2.00).
g :
(51 = 55)(53 = ES) + (“1 = ns)(na = ns) + (Cl - Cs)(C3 - CS) o1 4
4 =% 1
i AE, - 605+ (ny = ng) 2 + (5, - 5)M(E, - &g)7 + (n, = ng)? + (5, - 59)B)  °
ol Es
N No analytic solution of equations (2,80) is available, so that a numerical procedure is necessary.
! Since the point (ES, ngs cs) is known approximately from the solution involving the prece”ing set of k
three images, an iterative procedure would be suitable.
E
3 The Eulerian angles may also be obtained as follows. Since the expression (2.77) gives the 1
direction of Cx, and the pitch angle ¢ is the angle Cx makes with the horizontal, we have
i A2 + A2 4}
4 [ 8= COS-I[T-I——z_Z-E] (2.81).
- AT + A + A3

Similarly, the angle ¢ of yaw, which is the angle between the horizontal projection of Cx and the unit
vector -i", is given by

ap N1} :
¥ = coS [ ] (2.82). k

2 2
A, + A2

o

The rc1l angle ¢ is a little more difficult to determine. The horizontal line in the plane normal to
Cx is given by

- s h ]
A21 + A‘Q

e 2.83). :
TR R (2.83) s

1
If we assume then that the initial position of the Cz axis is vertical,
A2(€1 = E;s) - Al(nl - ns)

¢ = cos'l{', — > - A
(A] + A)(E, = £g)* + (n, = ng)® + (g, - 55)Y

(2.84).

The centre of mass C of the model then follows from the known geometry of the model relating the position
of the light-source S to that of C. Usually S will Tie on the Cx-axis of the model and application of

the transformation equations (2.11) and (2.12) is considerably simplified. The matrices in both these 1
equations are simply matrices of direction cosines, so that the inverses which are needed are obtained by 3
transposing rows and columns.

The complications of an iterative solution to equations (2.80) could be avoided by a slightly
different geometrical arrangement for the light beams, If instead of 2a/3 each pair of beams 551, §32
and Sjl, 553 subtend an angle n/2 at the source, the right-hand sides of the last fwo of equations (2.80)
are also zero, Removing the radical in each case and subtracting one equation from the other we obtain
a second linear equation (expressing the fact that J:J3 is normal to 531). An explicit algebraic solution
J for (ES, ngs ;S) can then be found. There are however certain practical disadvantages. The arrangement
of the optical components is not symmetrical and, for an axially-symmetric model, the effect would be to
move the centre of mass off-axis. Where additional mass can be tolerated, ballast could be used. A
better arrangement, if space s available, is to accommodate a fourth beam providing redundant information,
so that uncertainties could be reduced.

o

-

3 2.233 The estimation of aerodynamic derivatives

o

Our discussion so far has taken account of any general motion that & model may execute. However
' we saw when examining the equations of motion and when trying to formulate expressions for the aerodynamic
E i forces and moments that small motions only are amenable to analytic treatment. The experimenter usually
: goes one stage further in 1imiting the motion, Where possible he tries to arrange that as many of the
state variables .remain unchanged during the motion as is consistent with the measurements to be made.
Thus in measuring the drag coefficient he would try to ensure that only motion along the direction of the
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relative wind vector takes piace. Since drag cannot be eliminated an unrestrained model will always

have some motion along that direction, so that experiments designed to determine any other aerodynamic
coefficient or derivative must take account of it. An alternative method would be to provide positive
restraints for some degrees of freedom only, but such techniques are rather special, and are bezt discussed

separately (see section 2.4).

The equations of motion in conventional dimensionless form have as independent variable the non-
dimensional %ime £. We discussad earlier the advantages of a single unit of time for both the longitudinal
and lateral motions, but there remains a fundamental difficulty. We have defined

t-H (2.60)
c
for aeroplane-like shapes, while for axially-symmetrical configurations € is replaced by some other
representative length. The inherent difficulty centres upon the presence of the relative speed V in the
definition, This is given by

Ve, - Up)? e vE ety g
and so varies throughout the test. The dimensionless time t is therefore not a particularly convenient
variable for analysing free-fiight data. A change of variable to

=y t-g =gt (2.85)
removes the difficulty, since both £ and t are measured fairly directly. Thus

d :L‘dE*=VL
dt " ggx  dt de*

and 4
U
2 _d v d 242 %Bd
Y =V st w o

In dimensionless form

TP T
dt dg*
and
m;ﬁuf;-ﬁd (2.86)
dt2  dg*? de*
where we have used
m SEEE = Cp 3 oV2S

It is convenient to review the ways in which aerodynamic information can be obtained from free~
flight test data by treating each item separately; accordingly we begin with the simplest, the drag
coefficient.

2.2331 The drag coefficient

We suppose, to begin with, that a model possessing mirror symmetry has been released with zero
initial motion at its no-1ift incidence and with zero yaw. The motion which then ensues is along the
direction of the wind vector, which we assume is parallel to 0, However the period of steady test flow
does not begin immediately and the model begins its motion under the influence of the tunnel starting
process. The displacement and velocity of the model at the end of this starting process are of course
unknown, and the drag analysis must take account of this.

The basic equation of motion is
du
2] 2 _ d% _ B
DO = -EIJSCDO(U‘” - UB) =M a—té- =m T (2.87)

and as a first approximation, we might assume that UB <<V, In this case the drag force and the
consequent acceleration are constant, and equation (2.87) may be integraced to give
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pSC; v2'
£ =6y + UBo(t - t) +—— (t - to)2 (2.88)

where 50 and U8 are respectively the displacement and velocity at time t when the quasi-steady period
beginc, A Ieagt-squares fit of the experimental data to equation (2.88) yields first approximations to
CDO and UBo‘ This method has been used by Pennelegion, Cash & Shilling (1967). A difficulty present in
all methods of drag estimation is the strong dependence of cDo on the dynamic pressure of the stream, which
in hypersonic impulse tunnels is rarely known with great accuracy. Pennelegion and his colleagues at the

National Physical Laboratory avoided this probiem by flying a calibration sphere, the drag coefficient of
which was assumed known.

Using the variable (g - U_t\ which represents the distance travelled relative to the gas, a2quation
(2.87) may be integrated exactly, subject to the assumption that CDO remains constant (in addition of

course to p, S and m). Of the several possible forms of the results, we draw attention first to the
reformulated differential equation

) d{en(l - UB/UN)} d{2n(1 - UB/Um)}
n .

Cy = = .
D, #5 T A{UE-E) S (2.89)

which might in principle be used directly as suggested by Prislin (1966) and Dayman (1966). Plotting
il - UB/Um) vs (U_t - £)/C using measured data and taking the slope gives a value for CDO. A double
differentiation is involved, the first being necessary to determine UB’ so that the procedure is unlikely
to yield very accurate results.

Integration of equation (2.89) twice results in an equation relating ¢ and t as follows
texp[- K Cp (£ - Ut) - (g, ~ Ut )] - 1)
_ 0
t=t + L) — (2.90)
o ()

where K = p5/2m and tys Ug and £, have the same meanings as in equation (2.88). Equation (2.90) can be
used as the basis fur a "more accurate" estimation of Cp_even though it is not given explicitly. The
problem is basically to determine that value of cDo which provides a "best fit" to the measurements

£ = g(t), and the details of the procedure depend upon how this "best fit" is defined. One might choose
tc minimse either the sum of the squares of the residuals of the measured and calculated times at a given
value of g, or those of the measured and calculated positions at a given time ¢, Equation (2.90) is
readily inverted for the latter approach which appears less complicated:

]
E=g v U (t-t) - X {1 + K Coo(t -t (U, - er)) (2.91)

A standard optimisation procedure might then be used. For example, with the value of CDO obtained from
equation (2.88) one obtains values of U; and %o by fitting equation (2.91) to the measurements using a
least-squares approach. The sum of the squares of the g-residuals is computed, the drag coefficient is
changed and the process repeated, If the sum of the residuals decreases, cDo is changed further in the
same direction; if it increases it is changed in the opposite sense and the calculation of residuals
repeated, So long as the sum diminishes, one continues to change Cp in the direction khich reduces the
sum of the squares of the residuais. When this sum increases cDo is changed by a smaller amount in the
opposite sense, the calculation continuing until the increments are less than some specified value.

The preceding analysis is based upon the assumption that only a drag force acts upon the model.
It may however be .applied directly to ather cases in which CD remains constant. In such cases the flight
trajectery will not be parallel to Og, since in general a 1ift force may also act when the model is at
incidence. Since the drag force is defined as the component of force along the direction of the relative
wind, we should replace equation {2.87) by
d2x
D=-m 1
dt?
where Xy is measured npposite to the relative wind as in section (2.205). The trajectory angle Y,
relative to the wind is normally very small (at most a few dagrees), and since

. )
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dg = - dxw cos v, (2.93) !

little error is involved in taking cos Y, = 1 and using the g-coordinates in the analysis.

Additional complications arise when the drag coefficient cannot be regarded as constant during the
flight. The drag coefficient is usually a function of incidence, so that one implication of the
paragraph above is that the incidence remains constant throughout the test. In so far as the velocity
componentS(UB, HB) of the model are functions of time, this can never be strictly true unless NB remains
zero, or the pitch angle o changes so as to compensate exactly the change in “B‘ The latter circumstance
is somewiiat unlikely, but as we have already noted Y, remains small, so that the effect on the incidence,
see equation (2.16), is also small, It may nevertheless be necessary to take it into account, in
particular when CD is a fairly strong fuaction of incicence.

Changes of incidence will also occur when the model is nct statically balanced; that is, when the ;
centres of mass and of pressure do not coincide. If the position of the centre of pressure depends upon 3
jncidence, then it will move as NB changes, so that for such a model, static balance cannot be exauctly
maintained throughout the flight, and the model will pitch.

Seiff & Wilkins (1961) have indicated how these variations may be accommodated. They suppose that i

the drag coefficient is a quadratic function of resultant incidence an» i
i

G =C *C o (2.94) j

0 2 }'

the effective incidence ap = (a? + sz)é being appropriate for axially symmetric or equivalent shapes.
This form is fairly common in practice, the second term being the drag-due-to-1ift, but the method may be
generalised to other powers than 2, and even to polynomials when sufficient data exist.

Equation (2.94) is then substituted into (2.89) which is then integrated to yield

2k _ £k é: 2 ok Uoo - UB
G (55 - &)+ Cp, I og &7 = u anfg——yp2) (2.95).
0 o
£* 1
1

Had CD been assumed constant, the quantity in curly brackets on the left-hand side of (2.95) would have
been CD(E; - é:), so that it may be regarded as the product of an effective drag ccefficient C; and the

'distance' (§7 - £}). In other words eff
€, = Cy +Cy o2 (2.96)
Deff DO D, R
where
— EX
@ = el [ 2 g ‘ (2.97)

ok 13 .
(€, - &) e

is the mean-square incidence over the interval. Note that, in defining Cp £f using equation (2.95), only
the end point velocities Ug and Up are needed. When sufficiently qood data exist, these equations may
be used over several intervals of a single flight trajectory to yield an element of the cDeff vs./'sz
curve, rather than a single point.

2.2332 Static and dyramic longitudinal stability derivatives

We suppose that the model is designed so that its centre of mass is forward of its centre of
pressure, A nose-down pitching moment will then act to reduce the incidence of the m~Jel, which will
tend to oscillate. We restrict attention to simple planar motions. Such motions will occur when the
mode] possesses a plane of mass-geometric symmetry and is launched or released with this plane aligned
with the oncoming stream. The equations of motion are then equations (2.66a) for aeroplane-like shapes
and equations (2.71), suitably simplified to take account of zero spin rate p and large u, for axially-
symetric models. As before we change the independent variable from t to £* in accoruance w'th equations
(2.88), and using a dash (') to denote differentiation with respect to £*, we obtain

o' +Ba' +Ba=B, (2.98)

i
i
:
K
i
)
i

upon eliminating 6 and a. The coefficients BK are given by
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2 B, =4 (c, -C)- € +< )
1 Pw L, T gz ¢ m
3 yy
C
i (2.99)
B, = -
2 2 .
-4
] (ryy )
cm
; By = ""‘122‘
(I, AR)
yy
F where terms involving products of aerodynamic coefficients have been neglected. The quaniity B; is a
4 . measure of the dynamic stability. These equations apply to the small amplitude mctions of any shape

possessing a plane of mirror symmetry; for axially-symmetric shapes the choice of a single reference length
necessitates the replacement of (Iyyﬂiz) by Iyy and C,, is zero.
0

5 , The solution of equation (2.98) is the well-known decaying harmonic motion, which may be written
3 i in the fom

% n, -18,8* £ - g
3 (a+ t;") = Age cos 2n{——) (2.100)
a

where the wavelength A is given by
2n/) = /82 - (581)2

2,101
e (2.101)

since in most practical cases the aerodynamic damping is small and 82 >> ABf. The constants of integration
Ao and 5; are determinable only from the initial conditions of the motion.

For small amplitude motions then, the wavelength A is constant, and the static stability is given

¥

by

452 = 2
= - R .102).
Cmcl N (Iyy ) (2.102)

The dynamic stability parameter follows from the decay rate of the motion. Assuming that two peak values
(o, + ao) and (o, + uo) one wavelength \ apart are known, it follows from equation (2.100) that

a, +a
!l __9, (2.103)

(!2+(1°

B, =-)?‘-2.n(

\ the inclusion of ay = Cmo/Cm taking account of the possibility that the oscillation is about some mean
incidence different from zerg.

The above method is suitable when a sufficient number of oscillations occur to define adequately
at least two peaks of the same sign. Another procedure is described by Chapman, Kirk and Malcoim (1970)
which can be used when a single peak only is weli-defined, but the data have to be accurate enough for the
second derivatives o] and o at two values of €* to be estimated. Making use of the fact that the static
moment coefficients (Cm)s are identical at two points, either side of the peak, which have the same ;
incidence, they show that

—

all a!l

B, = - 12 (2.104) ]
& - a 1
1 2 i
and ;
ﬁ (Gs oot - ooy 5
] Z " :
fyfR o e, .
& which reduces to
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when the damping is negligibly small. In these equations (Cm)S corresponds to the term

(Cp a)(f liRz)'l = B,a of equation (2.98). In determining the static and dynamic stability using either
of these methods, but particularly with the second, the effects of scatter in the experimental data are
removed by using a "best-fit" polynomial. A standard least-squares procedure would be suitabie, and
different polynomials may be used either side of the single peak.

The analysis above is restricted to cases of linear aerodynamics, that is situations in which the
static pitching moment is a linear function of incidence. When the incidence remains small this
assumption is justified, but it is unlikely to be so at large incidence. One effect of non-linearities
in the pitching moment incidence characteristic is that the wavelength varies with the amplitude of the
oscillation. Because aerodynamic damping is generally small, the amplitude does not change greatly during
a single flight, so that non-linearities are really only detectable using data obtained from a series of
flights of a particular model, each flight having a different peak incidence. Chapman and his colleagues
(Yoc. cit.) discuss several non-linear relations M = M(a) of the polynomial type and Jaffe (1964) has
examined in some detail a relation having the form M = Mrsin(re), where r is a constant., According to
Jaffe (1964) a relationship of this kind is fairly representative of the results of Newtonian theory for a
number of axially-symmetric shapes at incidences up to and even beyond »/2, Jaffe's analysis is rather
complicated and we shall not accemp: a summary here.

A body for which the surface geometry is axially-symmetric may nevertheless have its centre of mass
off-axis by a small amount. In such cases there will be lateral aerodynamic moments about the centre of
mass and the resulting motion will be non-planar. Although the equations developed in section 2,222 are
not strictly applicable, the products of inertia are likely to be negligibly small for a small offset of
the centre of mass. Again an imperfect release or launching of the model may result in a precessional
motion about the mean flight path and even perhaps a rolling motion. Nicolaides (1953) has described a
method - the so-called tricyclic method - which can be used in such circumstances, but it is formulated
in terms of so many "unknowns" that a fairly large quantity of high quality data is probably needed to
utilise it properly, The method is based on the assumption of linear aerodynamics so far as the static
pitching moment vs. incidence is concerned; it is well summarised in AGARDograph 138, and it was once the
most widely-used means for analysing free-flight data in order to obtain aerodynamic coefficients. It
depends however on having a closed-form analytic solution for the equations of motion, a need which can be
circumvented by using modern, very high speed, automatic digital computers to produce numerical solutions.
We shall refer to these numerical techniques in section 2.2334 after a brief discussion of the lift
derivatives,

2.2333 Lift analysis

The equations describing the linear motion in the vertical plane, of the centre of mass are
equations {2.26):

?
z ‘;
F =m i—g + mg i
14 2 {
dt y
) (2.26). :
d !
Fo=an<s i
& at? i
When the motion is confined to this plane, the 1ift L is given by 3
L = - F; cos y, - FE sin y, (2.105) )
where the trajectory angle vy, is é
-1, wB -1, dr¢/dt ‘
Yy ® tan (U—_—U—B') = tan (B—‘-Ld—ﬁm) (2.106). ;
Thus measurements of the trajectory g(t) and z(t) directly yield the 1ift L(t). In general circumstances
this is of little direct use, since with incidence changing as a result of both pitch and heave, the
aerodynamic 1ift derivatives are not easily separated.
As a first approach then we postulate a series of flights each at a constant but different
incidence. According to equation (2.16)
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a, = 6-7, (2.16)

so that in practice this means a zero pitching rate and a negligible change in v, during each flight, since
it is unlikely that 6 could be so matched that it cancelled exactly the effects of changes in the vertical

velocity component HB. In typical cases however Y, rarely exceeds a couple of degrees, so that as a first
approximation we write

d2 _
m-J;g- +mg = - C 3oV2S (2.107)

and treat CL as a constant, taking the value estimated as app:opriate to the mean incidence during the
flight.

Of course flight in this mode implies that the model is statically balanced; that is, the centres
of mass and of pressure coincide. The achievement of such a state is generally the result of a set of
trial flights in which the centre of mass of the model is adjusted from one to anuther. We have seen in
the previous section how a pitching motion may be analysed, and if we imagine a pair of tests conducted
with different positions xcl and xc2 for the centre of mass, then since only Cmu changes, it follows from

G = € L _cp (2.108)

that both the location Xe p of the centre of pressure and the normal force derivative C, can be determined.
. Qa
For small angles we have

D (2.109)

so that the static 1ift derivative C_ follows when CD has been found as described in section 2,2331.
a

A method analogous to that mentioned in the previous section for utilising the variations either
side of a peak incidence can also be used to estimate both the static and dynamic Tift derivatives. If
the vertical motion ¢(t) is known, the true coordinates can be corrected to eliminate the effects of
gravity, since the vertical displacement due to gravity is simply 3gt2, Equation (2.107) is then
re-written in the approximate form

1

R S |
Seorr © ¥ cL - u{(CL)s + (CL)d) (2.110)

the term (CD y,/u) having been neglected after changing the independent variables from time to £*. Using
a least-square polynomial fit to the experimental data in the form «(c*) and ;corr(s*), two values are
chosen at'the same incidence « either side of the peak. The corresponding values of 520rr and o' are
estimated. Then because the static 1ift coefficient (CL)S depends only upon the instantaneous incidence,
so that it is the same at both points, we have at that incidence

SCURE TGRS COMERCII P

Approximating the dynamic 1ift coefficients by

), = (€, +C ) gives
L'd L& Lq
- (6 =gl + wloger + 7 (o, * Cqu [0 + o] (2.111)
a
and
;n - ;u
(€, *#C€ ) =-u [} 2)corr
& q ¢l -«

The contribution to the 1ift of the dynamic term is generally very smail, so that it is unlikely that it
can be estimated accurately using a method which depends upon a double differentiation of experimental
data, albeit smoothed.

When the motion is non-planar, the tricyclic method of Nicolaides (1953) can be used, but as we
have noted in the discussion on stability derivatives, the restrictions inherent in the method can be
avoided by utilising numerical integration instead of analytic integration of an approximating function
for ap = ap(4).
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2.2334 Numerical integration of the equations of motion

Obtaining trajectory data from photographic records is a time-consuming and therefore costly
procedure, Add to this the fact that impulse tunnels can rareiy be operated more than a few times a day,
and it becomes clear that methoas must be sought for extracting as much information from mach test as
possible.  Thus fairly complicated numerical schemes, using high-speed digital computers to integrate the
(coupled) equations of motion are justified. Such procedures have been developed, for much the same
reasons, to handle data obtained from ballistic ranges, and the methods can presumably be adapted for use
with free-flight tests in wind tunnels. What remains in doubt to some extent, at least until the methods
have been successfully used, is whether the quantity and quality of data obtainable in very short test
times are sufficient. A typical ballistic range used for aerodynamic stability measurements may have 30
or more measuring stations, though fewer are sometimes used (Canning & Seiff, 1970). In the range of
course these measuring stations are spatially separated, and the photographic records obtained are distinct.
Although the impulse tunnel avoids the problem of knowing accurately the relative positions of several
measuring stations, it introduces a more serious difficulty, that of separating the successive records.
The quality of vey high speed “ciné-photographs" may prove inadequate, while the multiple exposure of a
single, large photographic plate (see Chapter 4) may not yielid sufficien. information. In these respects
the optical telemetry system developed by Requardt & Kabelitz (1971) looks the most promising. It may be
pertinent to remark that in a recent report (McAlister, Stewart & Petersen 1971) from N.A.S.A. Ames, where
the more sophisticated of these numerical techniques have been developed, two sets of free-flight tests
with a particular model serias were described. For one set, conducted in the pressurised range, a fairly
detailed analytic procedure based on the tricyclic equation (Malcolm & Chapman, 1968) is specifically
mentioned as used for the data reduction. No such specific mention is made concerning the data obtained
in the 42-inch shock tunnel which were measured from ciné-photographs taken at 500 frame/s during a
nominal test period of 20 ms.

In contrast Richards & Enkenhus (1970) have used a modified framing camera together with a
repetitive spark as a light source operating at up to 8000 /s, to obtain photographs in the V.K.I. free-
piston "Longshot" tunnel, vhich has a test flow duration of about 20-25 ms. They were able to obtain
information of sufficient quality to define accurately about 4 cycles of oscillation in pitch of a 30°
half-angle cone (in only one test was the model in free flight; 1in the others the model was restrained on
a knife-edge mounting, so that it had only a single degree of freedom).

In order to determine the aerodynamic derivatives appropriate to the motion, they integrated the
differential equations using a Runge-Kutta scheme with assumed values for the coefficients. They were
able to account for temporal variations in the stagnation conditions by choosing as the "initial condition"
for the integration the measured time at which the pitching rate first passed through zero, thereby also
ignoring the initial phase of the motion which results largely from the tunnel starting transients. The
predicted motion is then compared with that measured, and the aerodynamic derivatives are adjusted until
agreement is reached. It would appear from their account that these adjustments are made by a trial and
error method, and the agreement or otherwise is judged by visual comparison of the plotted results.

Two other schemes have been used with ballistic range data which provide a more systematic
comparison of the measured motion with that predicted by integration of the equations of wmotion. In the
simpler scherme (Boissevain & Intrieri, 1961) the coupled equations are written as four second order,
ordinary differential equations in which £, f, a, B appear as the dependent variables with £* as the
independent variable. They are then integrated twice, term by term, treating the coefficients which are
algebraic functions of the aerodynamic derivatives as constants. All the terms which then appear, apart
from the coefficients just mentioned, can be computed from the measured data once integration limits are
chosen.

A number N of upper limits £* for integration is then chosen, and all the "known" quantities
calculated using smoothed curves fitted to the measurements. For each value of the upper limit, four
equations are obtained in which the unknown coefficients containing the aerodynamics appear linearly.

The number 4N is made larger than the number of unknowns so that a redundant set of equations is obtained,
These are then "solved" for the aerodynamic coefficients using a straightforward least-squares procedure.
Although this method is simple and does not require a very large computer, it has the disadvantage that
there is no way of optimising the results except by trial and error. Only the value of N and the
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particular integration limits chosen can be altered, and there does not appear to be a systematic way of
doing this.

The second method is a very much more sophisticated iteration scheme, which is designed to choose
those aerodynamic coefficients which when used with the equations of motion provide a "best-fit" to the
measurements (Chapman & Kirk, 1969, 1970). The scheme begins with a "starting solution", which may be
obtained using any of the e~ ,ier methods, including the approximate one just outlined, "Differential
corrections" to the unknowns are then calculated, using the method of parametric differentiation to
calculate the necessary partial derivatives of the dependent variables with respect to the coefficients
and initial conditions. The coefficients and initial conditions are then corrected, and the procedure
repeated until a prescribed degree of convergence has been achieved. The method is too elaborate to be
described in more detail here, and it requires a fairly large, high speed digital computer because of the
number of differential equations involved. It is however a very powerful method which can not only handle
“non-linear aerodynamics” and known streanwise density variations but it can even use simultaneously, data
from several flights of the same model configuration to find a "best fit" for that shape. The latter may
be of particular advantage with very short duration impulse tunnels wherein only a very limited number of
good quality "records" can be obtained for any one flight.

Both of these numerical schemes are described in more detail in AGARDograph 138, where the results
of applications in particular cases are also given.

2.3 Aerodynamic data from measurements of the reaction in the supports

We turn our attention next to the supported system, one in which the aerodynamic loads on the
model are reacted by loads in the suppurts. These aerodynamic loads are relatively well-defined, since

the model remains at a fixed attitude during the test. Since however the principle of this force-measuring

system depends upon measurable strains occurring in the supports, these supports must have flexibility.
The combination of inertia and flexibility means that the system is liabla to oscillate, particularly
when the loading is transient in nature, as it is in an impulise tunnel. In order to infer the
aerodynamic loading on the model we need to understand the relationship between this loading and the
strains or displacements undergone by the supports. Having ascertained the desirable qualities of a
"force-balance" we shall then review briefly how the pertinent properties of a real system may be
estimated so that the designer can exercise some control over its performance and the user can better
interpret his records.

In this connection it is useful to begin with a discussion of the simplest system - one possessing
a single degree of freedom. We shall then generalise our results to systems more representative of those
met in practice.

2.31 Systems with one degree of freedom

The single degree of freedom system is not especially representative of any thai might be used to
measure aerodynamic forces, though in principle it could be used to describe some aspects of the behaviour
of a drag-balance, drag being the only component of aerodynamic load that can arise in isolation.
Nevertheless it provides a good deal of insight into the behaviour of vibratory systems and its main
features are worth reiteration. Detailed treatments will be found in many standard textbooks, see for
example Thomson (1966) or Jacobson & Ayre (1958). Here we shall be concerned with those features
relevant to the present applications.

The equation of motion for a system such as that shown in figure 2.12, consisting of a body of
mass m, a linear spring of stiffness k, and a viscous damper of coefficient c is

mX + cX + kx = F(t) (2.112).

We have included the damper since a few remarks are in order on the feasibility of using artificial
mechanical damping. The problem essentially revolves on the determination of the force input F(t) from
the measured reaction of the system., The force transducer measures the strain in the elastic member;

in essence then the relative dispiacement x(t) of the two ends of the spring constitutes the reaction, or
response. The general solution of equation (2.112) is well known. It may be derived in several ways;
for example the method of Laplace transforms or the convolution integral is particularly suitable for
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transient functions “(t). To proceed further we need to be a 1ittle more specific about the input force
F(t) that we are trying to resolve.

2.311  Response to transient force inputs

We have remarked earlier that the precise form of F(t) in practical cases is not known, but in
general terms it is represented by the sketch in figure 2.1. Idealisations of this curve are possible
and we shall consider these in more detail later. To begin we shall discuss the response x(%) to a
step input, defined by

F(t) =0 for £t <0
F(t) = Fo for t>0

(2.113),

Such an input function might be regarded as the leading-edge of an ideal input since it represents a zero
time for both the tunnel starting process and the establishment of flow about the model, Strictly we
should use a 'rectangular pulse' so as to represent the finite duration of the test flow, but for the
present we are concerned with the onset of flow only. In any case the end of the rectangular pulse is
merely a negative step, and but for the fact that the system is already in motion it may be handled by the
same procedures as the positive step.

The responses of the system illustrated in figure 2.12 to a step are shown in figure 2,13 for
various values of the damping ratio ¢ = ¢/(2/MK). One notices immediately that in no case does the
response exactly follow the input. Those cases in which the damping is sub-critical, 0 <z < 1, always
exhibit an overshoot, the first peak value Xy being the largest. It can readily be shown that

x = F°[1 + exp [—'l‘-—’ (2.118)
p kK T - 'CzJ ‘
and that this peak value occurs at a time tp given by

t o= et (2.115)
P w2
n

where wﬁ = k/m, Clearly as ¢ = 1 the overshoot is diminished but the time-to-peak-amplitude, and
correspondingly the "rise-time", increases. Although some compromise is called for (g = 0.7 is often
regarded as an optimum value), some damping would appear to be desirable. If we argue that the response
sheuld settle within say 2% of the steady value Fo/ks then the settling time, after which |x(t)-F°/k|<0.02,
is about 4/(cwn). This time must be somewhat less than the duration At of the rectangular pulse which
is an idealisation of the innut force resulting from a flow of duration at.

A few sample calculations show that for the longer duration flows - say about 0.1 s - , a
mechanical damper using a high viscosity silicone 0il and occupying a volume of order 1 cm”, could provide
the required viscous damping, Unfortunately a practical system with sufficient lateral rigidity is not
easily conceived, even for a simple, drag-only balance. For a multi-component system, the difficvlties
are compounded, and since structural damping is generally small, we shall ignore damping in the remaining
discussion of mechanical systems.

For the case ¢ = 0 then, the step-function response is simply (Fo/k)(l - cos wnt), an cscillation
at the natural frequency wy about the steady state value Folk, the amplitude of this oscillation also
being Fo/k. To "recover” the input in this special case is relatively simple; we merely take the mean
value, This is not necessarily justifiable for other input functions however. Returning to the basic
equation, we have for zero damping

w o
X +uaX = F(t)/m (2.116)
or
X Fét)
;% +X=

Three approaches suggest themselves

(i) The system is designed so that wn is very smail. In the limiting case, vy * 0, we have F(L) = mX
which of course is the free-flight case discussed already in section 2.2.
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(i)  The natural frequency is made very large, so that w:x >> X. We then have

F(t) = kx.
' This case, sometimes referred to as "acceleration-control”, is the principle we seek to employ
i for force-balance design,

(iii) When mﬁx and X are of comparable magnitude, both displacement and acceleration need to be measured
’ and combined in suitable proportions to yield F(t). This case is commonly referred to as
"acceleration-compensation” and we defer a discussion of it until section 2.4,
For the present we shall concentrate on case (ii). The outstanding question we have to answer is how }g
large wy has to be for kx(t) to be approximatvly representative of F(t), and in the 1ight of what we have 3
§ noted about the step-response quite what is meant by the question. So far as the step-response is
concerned, its nature appears to be independent of wys SO thit to recover Fy we would need to use the i
s acceleration~compensation method to eliminate the oscillatory component. The important feature of the 5
i step input is that it is composed of the series of odd harmonics extending to infinite frequency: !
; 4 F :
! Fo = - {sin at + sin 3nt + sin Snt + eeeeel} *
3 ™ T T T
g ¢
1 for 0 <t <. g?
1 It is in relation to the frequency content of the input function F(t) that vy has to be large. The 1
inTinitely fast rise at the leading edge of the step necessitates the infinite frequency. If we moderate 2
this to a somewhat more realistic rise-time, say a linear ramp of duration tl followed by a constant level f
Fos we now have as input 4
_ F(t) = Fyt= for 0 <t et ,
] 1 (2.117)

and F(t) =T, for t > t,

2alh

The response to this input is
Ly ) ofor 0<t<t
AT A 1
LI (2.118)

sin ot sin ”n(t'tl)

sin o t
x(t) :
1

Sl ikt - o

22

F
and x(t) = E2 a- } for t >t

“’ntl + (a)',‘tl
and it is clear that as (unt,) becomes large, x(t) -+ Fo/k for t > t,. Figure 2.14 shous the shapes of

these responses for several values of (”ntl)' The designer of a balance has no control over the rise-time

t, but the requirements on Wy in relation to tl are clear. The characteristic time (l/mn) for the system B
must be short compaired with the rise-time of the forcing function if the undamped oscillations are not io
be too obtrusive. This aspect is well illustrated by the maximax response spectra (Jacobsen 4 Ayre,
1558). The single degree of freedom, second order system in general responds to 2 transient excitation
with an oscillatory motion, so that more than one maximum value in the mathematical sense may occur.
However the largest excursion, the maxiium absolute value of say, the displacement, gives the "maximax
displacement" and this is a function of the ratio of the characteristic time of the forcing function to the N
characteristic time of the system. Figure 2,15 shows the maximax displacement spectrum for the "ramp-rise-
step" defined by equation (2.117).

L A laalen.

Although the details of thair maximax response spectraz differ, one may draw similar conclusions
regarding “n for "step" inputs with differently-shaped but monotonic fronts. A number of examples are
given by Jacobsen & Ayre (1958) and are reproduced by Ayre (1960). Cur carlier question is now partly
answered; we need to ensure that (”ntl) is large.

A comparison of figure 2.1 with the step-like input functions we have so far considered, suggests
that the effects of an overshoot in F(t) ought to be .nvestigated. One possible idealisation which may
be used for this is illustrated in figure 2,16, It consists of & ramp rise as before, but on this occasion
one which overshoots the final steady value to reach a peak valre F, befere settling exponentially to the
steady value Fo. Mathematically, we represent vhe input by |

* Strictly thic defines a rectangular pulse of duration v,




Fu)=ﬁ§;mr0<t<g
(2.119)
and F(t) = F, + (F, - Fo) e (8t gor 5 ¢
The response is readily calculated as
F, ¢ sin wnt
X(t)-‘-r[ﬁ'-?n-t-l—— f0P0<t<t1

F sin wt  sin o (t-t )] (F,=F,)
_ 1 - n n 1 - 170 - _
and x(t) = = [1 ot + o, ] X 1 - cos wn(t t))

NUSA

-(t-t )/t 1 ]
- le 17772 - cos w (t-t,) + ~sino (t-t fortszt

7 (2.120),

G,
This response, equation (2.120), contains three terms which may be interpreted in the following way. The
first term is identical to equation (2.118) and represents the ramp rise to a level Fl in time t,. The
second term is the response to a negative step of magnitude (Fl'Fo) at time t and the final term results
from the exponential input (Fl-Fo)e'(t'tl)/tz which also occurs at time t;, (see figure 2,10). A second
characteristic time for the input function must now be considered; the decay constant t,. When t, >,
equation (2,120) becomes identical to equation (2.118) as we expact. However when (”ntz) is small, the
contribution of the third term of equation (2.120) to the response is also small, but the second term shows
that an oscillation at the natural frequency @y with amplitude equal to the cvershoot remains, Of course
as t2 + 0, the exponential decay becomes a negative step, so we might expect this result,

We conclude that in the absence of damping, 0y should in general be large compared with the
reciprocal of any characteristic time associated with the input, if oscillations are not to be of an
obtrusive amplitude. Looked at in another way, the natural frequency of the system should be so high
that the input appears “sluw", and its frequency content is such as not to excite the natural oscillation
of the system. In the context of the impulse tunnel, this requirement can rarely be met, as we shail see
later, hut there are other points that must be considered first.

2.312  Base excitation

So far we have taken it for granted *hat one end of the flexible element is anchored to a point
which remains stationary, In practice the "earth-side" of the spring element of a force transducer may
also have some motion of its own, For example the test model and balance may be connected to the internal
structure of the timnel in order to avoid the seaiing problems which arise when supports independent of
the tunnel are used. An impulse-tunnel is characterised by very rapid starting. Whether this is achieved
by the bursting of a diaphragm, by the discharge of ele:tricel energy or by somne other method of quickly
releasing stored energy, tie result is that stress waves are transmitted through the tunnel structure, and
because the velocity of such waves is hLigh, the model-support system is excited before or during the test
period. Even when the mcde! is nounted independently of the tunnel, motion may arise as a result of
vibrations of the laboratory floor which can be excited by pumps or other machinery or by passing traffic
some distance fram the building, The effuects of this base excitation must be eliminated,

Figure 2.17(a)represents a system in which the base undergces a displacement represented by

X = E xois'ln ”‘it (2.121)
The general resporse is
i(0)sin ot Ko SNt
x(t) = x(0)cos © t + — + ] » (2.122)
! n - (wi/“n)

the final iorm reprasenting the roticn arising as a result of the base motion. A force transducer in the
present context measures the relaiive displacement of the two ends of the spring - it may be, for exanple,
a strair gauge bonded to the spring, ¢i & piezoslectric element which itself constitutaes the ¥lexible
element, The output then is propnitioral ta (x - x). Assuming that the raturai frequency is not excited,
we have
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“’?Xo.s'i" wt
() - x(t) = [l (2.123)
n 1

so that vibrations of the support can be rendered unimportant by ensuring that Wy < . This implies a
“soft mounting" of the system, which can be achieved using either a body of very large mass, or very
flexible springs to connect the balance supports to the tunnel or laboratory floor, or a combination of
the two. We now have a system with more than one degree of freedom, and some care is needed in making
generalisations from the behaviour of a system having a single degree of freedom to the more complex
systems typical of practical situations.

2.32 Systems with more than one degree of freedom

A real physical system is not separable into elements which have irertia but no flexibility together
with flexible, inertia-less components. However in all but the simplest cases, continuous systems are not
amenable to analysis. Even if one resorts to numerical methods of solution, formulation of the governing
equations is not always easy. Accordingly it is common practice to represent a real system having
distributed mass and flexibility by one in which these are replaced by discrete "lumps". In this way the
infinite number of degrees of freedom of the continuous system is replaced by the finite number of the
Tumped-parameter system. Thus for a system of N rigid bodies, there may be up to 6N degrees of freedom,
when rotations and translations of each body are taken into account.

In many cases however the representations used are based on further simplifications. Often a
"one-dimensional" configuration is adequate, each body having only a single degree of freedom. Such a
system, shown in figure 2.17, may be used to represent the one-component force-balance, flexibly-mounted
to the structure of the tunnel which is regarded as fixed for the present. Thus m, is the mass of the
model, k, the stiffness of the force-sensor, m, the mass of the supporting structure and k, is the stiffness
of the springs between this structure and the main tunnel. In terms of the absolute displacements X, and
Xy the equations of motion are

m X, + kl(x1 - xz)

1 F,(t)

(2.124)
mX, + (ky + Kky) X, = kX, = Fy(t)

where F, and F, are the externally applied loads. These equations are "coordinate-coupled” and must be
solved simultaneously. They may be written in matrix notation as

] 0 X k -k X F. (t
! e ! | . [R® (2.125)
0 m,| X, -kl (kl+k2) X, Fz(t)
or
mlco + [Kltx) = (F(t) (2.126).

The .econd form, eauation (2.126) applies to the more general lumped parameter system, the order of the
inertia matrix [M] and of the stiffness matrix [5], both of which are square and symmetrical, being that
of the number of degrees of freedom.

To find the natural frequencies of the system, we put the right hand side (E(t)) equal to zero,
and assume that harmonic oscillations take place of the form

x; @ % elvt (2.127)

where the ‘tilde' is used to denote amplitude.
{Note that we assume that all parts of the system oscillate with the same frequency.) The natural
frequencies are then solutions of the characteristic equation

K] - w?M]] = 0 (2.128)
which is the condition that the equations be satisfied for arbitrary values of the amplitudes ii.

In the particular case described by equation (2.125) the off-diagonal terms of [g] are zero, while
those of the stiffness matrix are non-zero. Such a system is said to be statically-coupled. A different
set of coordinates might lead to the off-diagonal terms of [g] being non-zero, while those of [5] are zero.
The system is then dynamically-coupled. In general a system will be both statically and dynamically coupled.
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However it is always possible to find a set of coordinates q?, called principal coordinates, for
which both the stiffness and inertia matrices are diagonalised, and those coordinates are uncoupled. The
equations of motion for free oscillation now take the form

* 0 7 [T [ * 0 0 1 [ *]
m 0 0 ..ve q k]] veee 0 4
, o | I& 0 k., 0 0 .
0 Mo 0 oo 9, 22 cees 9
. o | [t 0o 0 Kk 0 >
0 0 my.... a3 & 33 veee Gl = o
A 1= I A I
so e q see q
) '“NN_ N | \ NN|
(2.129)
2 % %
and o, = kii/mii (2.130)

1

there being one natural frequency calculable for each independent coordinate, that is, for each degree of
freedom, In practice computer programmes usually exist as library sub-routines for extracting the

natural frequencies (or eigenvalues) directly from the determinantal characteristic equation (2.128) or its
equivalent. However the notion of principal coordinates gives us some insight into the requirements for a

well-designed multi-component balancr, as we shall see. The general linear transformations between the
*
coordinates X; and q; are of the form

*
X; = g rij 93 (2.131)

or in matrix notation

x = [RlgH
* -1
and {q ) = [R]™(x}

If then we substitute for {x} in the general equation (2.126) for forced motion, we find

[ ® @+ [ RlwY = ® (2.132)
and premultiplying by the trinspose of [R] we have

%* wk *. *~ *

M1@y + [K] @) = Q) (2.133)
where

¥ - ® [ [ (2.130)
and . .

&1 = [B) [¥] [’]

are diagonal matrices, and

*
Q) = &)@ (2.135)
is a set of generalised forces associated with the principal coordinates (g*). The left-hand side of

equation (2.133) is of course identical with that of equation (2.129) so that, writing equation (2.130)
in the matrix form

M7 ) = (2] (2.130)
equation (2.133) becomes
ok 2 * * ..'| %*
@) + [e%(q) = [g 7' @ (2.136)
or written out in long-hand
I L N O BT UL R IR (2.137).
1 iy

The behaviour of each of the principal coordinates is independent of the others; each behaves as though
it were an isolated single degree of freadom system, and the transient response is readily found so long
as the input on the right-hand side of equation (2.136) is known. Because [y*] is a diagonal matrix,

jts inverse is also diagonal, each element on the diagonal being simply the réciprocal of the corresponding
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element in [g*]. The problem reduces to finding the matrix [R] which diagonalises [M] and [K] according
to equations~(2.134). This mathematical protlem defines the ;pproach used as the basis of some iterative
numerical techr*ques for finding the natural frequencies and modes of vibration for multi-degree of
freedom systems, but in other methods the transformation matrix or its inverse is one of the products of
the solution. Once [5] is known, the generalised force {Q} can be found, and the transient response of
the system determined as a linear combination of the "normal mode" response,

However the independence principle suggests that a measuring system should employ a set of
transducers each of which is sensitive only along one principal coordinate, since then each transducer is
decoupled from all inputs but its own. MWe can infer that a system designed to measure 6 (generalised)
forces on a model will require at least 6 transducers, but only when proper decoupling of this kind exists
are 3 say, sufficient for a three-component balance. Thus if the force transducers can be so positioned,
that not only are they decoupled from one another, but are also such that the generalised forces are those
sought, then both the measurements and data analysis are considerably simplified.

Such an ideal is not easily achieved. Indeed it is usual to use a pair of parallel transducers
to resolve the force component along their sensitive axis and the moment about the axis normal to the
plane containing them. An arrangement such as that illustrated in figure 2.18 gives the normal force and
pitching moment as linear combinations of the transducer outputs.

The question of the natural frequencies of the resulting system is of course still an important one,
and these need to be calculated. If any of the natural frequencies lies inside the "critical range", the
corresponding mode will be excited, and unless the transducers can be totally decoupled from this motion,
the performance of the balance will be compromised. To employ "acceleration-control" therefore requires
all these frequencies (or perhaps all but one) to be outside the “"critical range". As we have seen, this
“critical range" corresponds at its upper end to the inverse of the fastest transient requiring resolution,
and at the lower end either to the inverse of the total test time, or to zero if static calibration is
desired.

2.32) Calculation of the natural frequencies and modes of vibration

The natural frequencies of a system with several degrees of freedom are given by the values of w?
which satisfy the equation

2 - ml® = o (2.138)
only the positive root of w ha;ing physical meaning. Clearly for a system with N degrees of freedom, the
characteristic equation (2.128) is a polynomial of order N (in w2). In practice only the lowest few
natural frequencies are of interest, In any case the physical model ¥ the real system is rarely
sufficiently adequate to justify much confidence in the*higher modes predicted., To obtain the lowest, or
fundamental frequency Wpys @ simple, rapidly converging, iterative scheme is available (see, for example,
Anderson, 1967).

Equation (2.138) is written in the form

Lo - ' me (2.139).
In fact the equation usually arises in the way, the elements of the flexibility matrix [15]'1 - commonly
referred to as influence coefficients - being more readily calculable than those of the stiffness matrix,

A trial eigenvector {2)(0) is assumed, arbitrarily normalised with say, iN(O) = 1. Substitution
into the right-hand side of equation (2.132) leads to a new eigenvector

@M - W Moo

which can be normalised by factoring out ZN(])' Comparison with equation (2.139) shows that the next
approximation to {X} is

* Special procedures may be needed when the system has two frequencies which are very close together,
or which coincide.
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(2.140)

and

(1) 1
('3;2') = zN( ) (2.141)
This process is repeated to find (5}(2) = [E]-] [ﬂ](i)(]) and continued until successive eigenvectors differ
by amounts less than some specified value, The fundamental natural frequency then follows from

(%z)(r) = z,(" (2.142)

where zN(r) results from the final iteration. Provided the matrices are not "too large", the calculation

is readily carried out using a desk machine, particularly since [g] is often in diagonal form.

In the event that the fundamental mode is of higher frequency than the critical range, no further
calculations may be needed. Such circumstances are likely to be rare, because models are usually sting-
mounted, and the fundamental mode of a cantilever system is of comparatively low frequency. It may
conceivably even be lower than that corresponding to the test time, and therefore below the critical range.
It is then necessary to determine the second and perhaps higher modes. A number of methods are available
which provide iterative schemes that converge on successively higher modes as the lower ones become kncwn
(Anderson, 1967; Fox, 1964). Most digital computers nowadays have standard subroutines which calculate
the eigenvaiues and eigenvectors of a (square) matrix.

There remains the problem of calculating the elements of the inertia and flexibility (or stiffness)
matrices. Essentially we require a formal procedure for writing equations which describe the motion of
the system, Such is Lagrange's method, based upon equation (2.5). Before we can use this we need some
guide as to how a real, continuous system might be represented by a lumped-parameter system which has some
physical significance, yet is sufficiently simple to have a manageable number of degrees of freedom,

2.322  Lumped-parameter representations

In general circumstances the representation of a physical system by a model involving discrete
elements is a task which often depends for meaningful results as much upon experience as on any other
factor., To some extent the complexity of the representation devolves upon the nature of the information
required. For example a simple cantilever can, for some purposes, be replaced by a concentrated "mass-
point" together with an inertialess "beam" of appropriate flexibility. Such a model is clearly useless
for determining the natural frequency of any but the fundamental mode., The limitations of any particular
representation must therefore always be borne in mind. The task of modelling his system is made a little
easier for the balance designer by the specific requirements of his problem. It is in the force
transducers that the strains are largest. Consequently it is these and their linkages which constitute
the important elements of the flexibility matrix. The relatively more rigid parts, such as the
aerodynamic model and perhaps the balagce body, contribute significant elements in the inertia matrix.
However difficulties are encountered when it comes to representation of the structure which supports the
model in the test flow., To minimise aerodynamic interference, the model is usually mounted on a fairly
slender “sting", itself attached to a support which may incorporate a means for changing the attitude of
the model to the oncoming flow. This support in turn may be connected to the tunnel, or via appropriate
seals, to the laboratory floor; in both cases further springs may be used. In some of these components
the distincti~ between the inertial and flexible parts is less clear. In particular, the sting itseif
behaves somewnat like a cantilever with a body attached to its free end. In representing this part of
the system by lumped-parameters, we must recognise that the higher modes calculated for the whole system
are affected by how many 'lumps' we use. As a general rule of thumb, modes should not be excluded that
have natural frequencies of an order similar to those which are included.
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The particular example ot a uniform, slender cantilever is instructive, enabling us to obtain some
idea of the order of the errors involved in lumped-parameter representation. The exact solution for this
case is well-known. The natural frequencies u, are solutions of the characteristic equation

cos BL cosh 8L = 1

mw? (2.143)
s LI
vhere g4 = I

m being the total mass, L the length and EI the flexural stif°ness of the cantilever.

As an approximation the uniform beam might be divided into N equa] elements as shown in figure 2.19.
Each elenent, of mass m/N, is replaced by a mass particle at the mid-point of the element it represents. )
Using v to denote the transverse displacement, it is readily shown using simple beam theory, that a unit
load distant z; from the built-in end produces 2 static deflection vj at a point zj <z given by

Here p is the density of the material of the beam, and A its cross-sectional area. Solutions of equation
(2.145) are presented in the table below for teveral values of N,  Included in the table are the exact
values for the first 7 natural frequencies. It can be seen that to obtain a value within say 10% for the

3
‘.‘1
¥
El ] z, 3 3z, . i
v = il {#- 1} = ) (2.144) i
and by Maxwell’s reciprocal law, aéi = a;j. Usinyg these flexibility influence coefficients, the natural i
freguencies are given by {
(5] 2,4 (a2 a a7 1 p
1 wnL ( A) 11 T12°°t N 1 g
v, 'ZZN’?%T a, a,, 3,y v, :
Vs a3 3N Vs 1
Ll ) (2.145) §
. . 3
[ "h | | 2N | | Vv
where 5
_ (23-1)3 [o(2i-1) _ C ’
SNCELE S RN j
i, j =12, «... N

and -%
Qs = A, 3

ij Ji
1
1

2

frequency of the Nt" mode, one needs to use (N+1) discrete elements to represent the beam, though to get 3
within 5% requires (N+2) elements. ]
. N 2 DA s 4
Natural frequencies JniL / T of a uniform i
cantilever as represented by N lumped-masses. !
4
is= 1 2 3 4 5 6 7 !
N = )
2 3.730  31.04 - - - - - !
3 3.608 24.17 77.69 - - - -
4 3.567 23.18 66.32 141.0 - - -
5 3.549 22.76 64.83 126.1 221.3 - -
7 3.528 22,39 £3.31 124.9 205.2 292.0 434.4
o 3.516 22.04 61.70 120.9 199.2 298.6 417.0




However it is probably less important to obtain an accurate estimate of the frequencies, than it
is to provide an adequate representation. Provided therefore that one does not lose sight of the fact
that this method often overestimates the firequency, replacing a continuous system by just sufficient
elements to enable calculation of the requisite number of modal frequencies may be sufficient. One can
then ascertain how many of the natural frequencies are in the critical range, or rather one car determine

whether a particular system is likely to be suitable for measuring the forces within the available test-time,

It is frequently the case that the natural frequency of some elements of the system, in isolation,
are far higher than those of the parts in combination, and consequently approximations are justified.

Thus the effect of the mass mg of the spring itself in the single degree of freedom system of
figure 2.14 may be taken into account by adding (1/3)ms to the mass m of the rigid body attached to its end.
Another useful result, also obtained using Rayleigh's energy method, enabies us to take account of the mass
m of a cantilever which has a rigid body of mass m at its end, Here the effective mass (m + 0,23 mb)
gives the frequency of the fundamental mode with surprising accuracy. Such results may be used to
facilitate lumped-parameter representations.

On this basis the three-component balance shown schematically in figure 2.20{a) with a model
attached, might be simulated so far as the pitch-plane motion is concerned, by the system of springs and
rigid bodies sketched in figure 2.20(b). The sting iz represented by the Tumped components k3 and Mmys and
its support by ku and m,. Usually the incidence-arc and platforms are made sufficiently massive and
their supporting springs so flexible, that the mode associated essentially with these is effectively
decoupled from the remainder and may be treated in isolation. The axial motion may also be regarded as
decoupied from the transverse motion and treated separately, because the influence coefficients relating
transverse loads and axial deflections (or vice versa) are zero. The axial motion can then be described
by that of the system discussed earlier, see figure 2.17, consisting of a pair of springs and bodies.

With a suitable representation of the system we can proceed to a discussion of how the inertia and
flexibility (or stiffness) matrices are derived,

2.323 Calculation of the inertia and sfiffness matrices

The inertia and stiffness matrices are of course merely coefficients in the equations of motion tfor
the system and so in principle we need to write these. We have already noted that Lagrange's method is
more convenient than Newton's for muiti-degree of freedom systems and therefore we begin with expressions
for the kinetic energy T and potential energy U of the system, which is assumed to be conservative.

In a formal sense, in terms of the generalised coordinates q; we have

- ] 4 . - .l * T .
T=zFim; 99 7@ (M14q) (2.146)
=) 1T
and U =yI § kij 95 95 =7 (@) [K}g) (2.147)
so that because the kinetic energy does not depend upon the ccordinates q,, Lagrange's equations reduce to
d T U .
=)+ ===0, i=1,2,. .. N 2.148
a’f(aqi) aqi > s Cy ( )

Our first task then is to choose suitable coord:.sates, which must be sufficient in number to describe the
configuration of the system. Again by way of illustration, we can conveniently refer to the representation
for the pitch-plane motion of the three-component balance of figure 2.20(b), choosing the coordinates X3
shown. Note that two coordinates are used to describe the position of the body of mass m,. Then for this
example

L 2 [Xyo ~ %12
1 o 1 s . 1 1 1 1 2 1 o2 1 2
T= -2' ml [Xl + 'IT;['—Z- (Xlr - le)] + '2- lll—rliT-L—z-t] + ? m2x2 + Vi ﬂ'la)(3 + 2- m“X!‘
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1.2 L, 2 i z] .
=g X M) I ) | X
Z g [ i * z) i 1t 2) ¢ 1 (L1+L2)2 ! (L1+L2)ZJ

. 2 Ly 2 1 .21 1.
+ xlr L“I(L1+L2) + Il(Ll+L2) } +x X m, (2.149)
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and
2 w2, ] s r2 1] 2 1 2 1 2
U= 3 klf(xlf xz) ty klr(x]r x3) ty kz(x2 - x3) + -z-ka(x3 - xu) ty ku X,
=ExPk +axPk o +33 (k +k) +hxd (k. +k 4k
2’1f1f'2'1r1r'2'21f2'2'31r2+3)
1.2
+ 3 X, ku xlf X, klf xlr Xy klr - x2 X, k2 - x3 X, k3 (2.150).

The equations of motion may then be obtained by substitution in equation (2.148) but it is not necessary
to do this for our purpose.

The inertia and stiffness matrices follow directly from a comparison of equations (2.149) and (2.150) with
the expanded forms of the formal matrix expressions (2.146) and (2.147), identifying the coordinates
xlf, xlr, Xp5 Xgs X, with 935 Gy G50 Qs A5 respectively.

Thus, for this example

- 2 -
{m1L2+Il} (mele-Il) 0 o 0
2 2
(L+L,) (L)
2
mLyL-L) mbel, . . .
2 A
(LL,)® (L)
(M] =
= 0 0 m, 0 0
0 0 0 m, 0
0 0 0 0 m,
and )
k 0 -k 0 0
¢ ¢
0 ky 0 -k, 0
r r
(K] = - _
z kIf 0 (k1f+k2) k, 0
0 -k -k (<k, +k +k ) -k
ll" 2 ll" 2 3 3
0 0 0 -k3 k“

and these would be used with equation (2.139) to estimate the natural frequencies of the three-component
balance.

2.4 Hybrid techniques

It is often not possible to meet the stringent requirements we have set out for force balances
regarding the elimination of its natural frequencies from the critical range. This is particuiarly so
with impulse tunnels having test flow durations of order 10 ms or less. In these circumstances the
aerodynamic forces and moments are not entirely reacted by quasi-static loads in the supports and the
inertia terms must be taken into account., The "acceleration-compensation" is generally provided by
separately measuring the accelerations and summing appropriate combinations of the accelerometer and force
transducer output signals.

Precisely the same situation arises in situations where the model i$ deliberately mounted so as to
be nartly free and partly restrained. Typically the model is supported so that it has a single degree
of rreedom only. For example pitch, roll or axial motion may be unrestrained and the simple motions
which result are measured. In some cases a weak restraint may be applied even to the nominally free
coordinate, In this case the inertia term is dominant, but the measurements of acceleration must be
compensated by the inclusion of a term representing the reaction in the support.
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We discuss the two methods separately.

2.41 Acceleration-compensation methods

The design of a sting upon which to mount a model in the test section of a wind-tunnel is a
compromise between minimising its aerodynamic interference and trying to ensure that its natural
frequencies are outside the critical range. The former requires a long slender sting which is not
compatible with a high fundamental natural frequency. In practice it is rare that the fundamental
frequency of a sting is more than perhaps several hundred hertz, so that in many impulse tunnels mction
of the model associated with transverse oscillations of the sting are potentially troublesome. When
only a single frequency of the system falls within the critical band, it may be removed by electronic
filtering of the output signal from the force transducer. This becomes more difficult with two and
virtually impossible when more than two lie within the critical range., Some method of "compensation"
is therefore required, though "digital filtering" may be possible when the data exist in suitable form,
As we have noted the simplest form of compensation, conceptually at least, involves separate measurement
of the accelerations, suitable proportions of which can be used to cancel the oscillatory component in
the output of the force transducer. Difficulties arise because the force transducer and its associated
accelerometer cannot occupy the same position., It is moreover sometimes necessary to place the
accelerometers at the extremities of the model to achieve an adequate signal level. As a result the
accelerometer and force transducer signals may not be in phase. In the absence of damping, of course,
the phase difference must be either zero or 180°, and cven with small damping similar phase shifts occur
except at frequencies close to the natural frequency. At first sight it appears that no difficulty
exists: either one adds or subtracts the scaled accelerometer signal in order to provide compensation.
Unfortunately the phase difference in the motion of different .points of the system depends upon the mode.

This point is well illustrated by the uniform cantilever considered in section 2,322, The modal
shapes for this system are well-known - the first few are sketchad in figure 2.21. The addition of the
model and the transducers only alters the picture in details which do not affect our argument. Suppose
that a force transducer is attached to a point Ze and an accelerometer is placed at z, as shown in
figure 2.21. Clearly if the acceleration at z, is in phase with the force at zZ¢ for the first mode, then
the acceleration associated with the second and fourth modes will be in antiphase with the force at Zgy
while the acceleration for the third mode will not be sensed because z, corresponds with a node for this
mode. Only some acceleration components can therefore be cancelled, while some may actually be enhanced
by subtracting a proportion of the signal appropriate to say, the fundamental mode, which generally has the
largest amplitude, It is in fact the lowest modes which require compensation; the higher modes a.'e often
outside the critical range and can be removed by a low-pass elactronic filter., Some modes will a.ways
remain uncompensated because the accelerometers do not detect the motion associated chiefly with the model
itself or with the force transducer vibrations, The corresponding frequencies shouid therefore be kept
high; in particular the model should be very stiff and of low mass so that it behaves as a rigid body.

Although the "exact" conditions for compensation are inpossibie to fulfil for a real system, it is
only the lower modes with natural frequencies in the critical range that are of practical concern, and a
linear combination of the responses from a few acceierometers should provide adequate compensation. [n
practice a system designed to measure all six components of the aerodynamic load would probably require
at least six accelerometers, so that one could use the outputs from all of them to compensate each force
compenent.  The positions of these accelerometers must be chisen so that accelerations associated with
each of the modes that require cancellation are sensed by at least one, and preferably not more than one.
When the force transducers themselves ar2 properly decoupled, compensation should be considerably
simplified because they will only sense a single inertia component; that directed along their axis of
sensitivity. It should be borne in mind however that the accelerometers may also have "cross-axis"
sensitivities, so that although one oscillatory component is removed it may be at the cost of introducing
another, -albeit smaller component.

The general problem of “inertia-compensation" may be formulated in the following way. In a simple?
one degree of freedom system, the external force Qi to be determined is given by

Q = kq; + m, (2.151)
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in the absence of damping, By using a force transducer to produce a voltage proportional to kqi and an
accelerometer to produce a voltage proportional to 61. the input force Q1 may be recovered by suitable
scaling and adding. This idea can be extended to multi-degree of freedom systems ir, which the force

transducer axes and accelerometer axes do not coincide, and neither is coincident with the reference axes
of the model.

For the six aerodynamic components, we have for coincident axis systems

" F ] 0
Fy By

i . :Z +om ‘;z (2.152)
L L

M Fy iy

N _FN ] -EN

where FJ represents the spring force and m is the mass of the modei. Suppose there are six force
transducers and six accelerometers generally disposed so as to be non-redundant, but whose axes do rot in
general ccincide with the axis system of the model to which {X, Y, Z, L, M, N} are referred. Then
assuming perfect, iinear instruments, the resolved components FJ and ﬁd (J=X0Y,27Z, L, M, N) are, in
general, linear combinations of the force transducer outputs f3 and the accelerometer outputs

vy (3 =1, 2.. 6) respectively; for example

Fx =0, + “xzfz + eeveees * “xsfs (2.153)
and

qx = BXI-’I + szyz + seenees BXGYG

The equations for the generalised asrodynamic force can now be written in matrix form
A} = [g](f} + m[g](x) (2.154)
where [g] and [g]} are 6 x 6 matrices and (A}, (f} and (y} are 6 component "vectors", or column matrices.

Inertia-compensation and axis transfer then require the determination of the 72 coefficients which
make up the [a] and [g] matrices.

A well-designed system will however have the off-diagonal terms of [a], the force-transducer
interaction coefficients, small corpared to those in the leading diagonal, so that as a good approximation,
each of the aerodynamic forces and moments involves a combination of seven terms; for example

5
Z = 0, F, + 18,50
6! (2.155).
= F + mgaijj

In practice, a force resolution system may be employed in which two parallel load-cells, spaced
apart, are used to react both a force component and the moment in the plane ccntaining their axes. In
this case one may either include the extra term on the right-hand side of the appropriate equation
corresponding to equation (2.155), or carry out the “axis-transfer" on the left-hand siuus to obtain the
aerodynamic forces referred to conventional model-fixed axes.

In appiication the proportion of each signal which is added algebraically to each force transducer
output would need to be adjusted empirically to minimise the undesirable oscillatory components.

A discussion of some practical systems and the way they are adjusted is deferred until Chapter 3.

2.42 Methods using partially restrained models

By deliberately 1imiting the motion which can lake place a certain amount of restricted information
can be obtained. By allowing only a single degree of freedom, the motion is conceptually simple and the
equations describing it readily formulated. The chief uncertainty is an unknown reaction assocfated with
the nominally free coordinate, which can arfse as a result of friction in the bearings which support the
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model, or because of some other imperfection in the pivots. The problem can usually be overcome by
introducing a weak, known restraint and repeating the tests. The two sets of results can then be used to
eliminate the unknown reaction. The chief difficulties associated with methods of this type are practical
ones and we shall discuss these in Chapter 4, treating them under the broad heading of “free-flight
techniques”.

2.5 Aerodynamic interference ‘from the supports.

We have already drawn attention to the particular advantage that the free-flight technique has over
force-balance methods, namely the absence of aerodynamic interference arising from the presence of supports.
This interference, as is well known, is more than just the obvious change in the geometric configuration
immersed in the test stream, Even when thin wires are used to support the model the effects can be
serious, since such wires can modify considerably the structure of the boundary layer on the model., This
is in fact the crux of the interference problem, because the 1ikelihood or extent of the interference is
far from obvious. A detailed discussion of the problem is beyond the scope of this account. Because,
however, it introduces constraints on the design of a force-balance system, we must draw attention to some
of the more important aspects, and at least try to provide some guide-lines for balance design.

The sting support which is commonly used is itself an attempt at a design which introduces a
minimum of interference, and in a supersonic flow it takes full advantage of the limited upstream influence
which exists, However boundary layers and wakes have subsonic regions, so that there is always some
upstream iiifluence. This can vary from a relatively unimportant small modification in the "base drag"
to a serious breakdown in the flow resulting from premature separation of the boundary layer on the model.
Between thesz extremes the skin-friction drag may be affected by premature transition to turbulence.

By its very nature the extent of the interference will depend upon the shape and attitude of the
model. Even where particular, simple shapes are concerned however, systematic tests are few, and most
of these have been conducted in subsonic, transonic and supersonic flows rather than in hypersonic streams.
One might expect nevertheless that the differing situations have some common elements.

The problem is perhaps best understood by reference to a simple example, such as that of a slender,
axially-symmetric body in a supersonic stream. In the interference-free case, the flow would separate at
the base, and the supersonic fiow would expand through a conical rarefaction wave towards the centre-line.
This would form a "cavity", in the near-wake region, of slowly-moving fluid, terminated by a recompression
region as sketched in figure 2.22, The details of this near-wake region, and in particular the base
pressure, are likely to depend fairly critically on the state of the boundary layer at separation. The
presence of a supporting sting in this base region is clearly going to affect the wake. There are
basically two efrects to be considered. The presence of a sting of any size is going to modify the flow,
and this is ganerally referred to as the "sting-diameter effect", There is evidence that such effects
exist at both Tow Reynolds number (Kavanau, 1954) and at very high Reynolds number (Sivier & Bogdonoff,
1555) and probably the measured axial force would require some correction in all cases, The second effect
concerns the length of the sting. It is common practice to provide aerodynamic shielding of the supports
so that the loads on them do not contribute to the force-balance readings. The shroud is necessarily
somewhat larger than the sting, so that the effective length between the base of the iodel and this shroud
will also influence the flow, It is apparent that the support in the wake region should be as long and
as slender as possible, but this conflicts with the requirement for high ratural frequencies in a system
designed to measure transient loads. The problem is essentially to decide just how large a diameter and
how short a sting one can tolerate from the aerodynamic viewpoint, and how closely aerodynamic shielding
of the sting can be brought to the base of the model. Simila* considerations apply to stiffening of the
sting by tapering in crder to raise the natural freguency of %ransverse oscillations.

Over the last twenty years or so it has becore established practice for standard models to be
tested so that comparisons can be made between different wind-tunnels and measuring techniques. AGARD
committees have drawn up specifications for a number of such calibration models, and one of these, Model B,
was subjected to systematic tests by Schueler (1960) who varied the sting configuration by moving the
windshield to leave different lengths of sting exposed. Model B is a wing-body combination. Tests were
carried out in supersonic flows at Mach numbers of approximately 2, 3 and 4 and ower a Reynolds number range
of 3.5 x 106 to 13.5 x 105, based on body length. Both the base pressure and the static pressure just
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forward of the base region were measured,

Schueler concluded that for a sting-to-base diameter ratio of 0.296, the static pressure just
upstream of the base was hardly affected by the length of sting so Tong as this was greater than 1,12 model
base diameters, The.base pressure however was affected by sting lengths up to a little more than twice
this value, though the tests at a Mach number of 4 were thought to be at Reynolds numbers where the sting
diameter itself is influential,

In 211 Schueler's tests the boundary layer on the body had undergone transition forward of the
base, He points out that the critical sting length - that is, the shortest sting for which the base
pressure remains unaltered by sting length - is very dependent on the state of the boundary layer approaching
the base, and he quotes some results of Kavanau (1953) on a cone-cylinder model at a Mach number of 2.84
in which this boundary layer was laminar. Schueler's results, those of Kavanau and some other data are
sumarised in figure 2.23. A laminar wake is very sensitive to the length of sting as one might expect.

The results illustrated in figure 2.23 were obtained on slender shapes in supersonic streams, and
for such conditions are probably fairly representative of the effect of windshield position.

Tests on a sting-mounted bluff body in a hypersonic flow of Mach number 20 in the Langley Hotshot
tunnel are reported by Miller (1965). A hemi-sphere cylinder having a length-to-diameter ratic of one
was mounted in turn on one of several stings ranging in diameter from 0.25 to 0.625 times the diameter
of the model. Two movable shrouds were tested, both of diameter 0.834 times the model diameter; one had
a semi-apex angle of 30°, the other of 90°, Like Schueler, Miller found little effect on the after-body
pressure just forward of the hase, The base pressure however was affected by sting lengths less than
about 2 model base diameters for the 30° shroud, while interference occurred with the 90° shroud for sting
lengths less than about 3 model base diameters. No effects of sting diameter were found over the range
tested, The Reynolds numbers/metre of Miller's tests were in the range 106 to 1.55 x 106, and the length
of the model was 76.2 mm, so that the highly-cooled boundary layer on the model was probably entirely laminar.

We have noted already that the state of the boundary layer as it separates in the base region plays
an important role in determining the base pressure. It will likewise be important in determining the
extent of any interference due to sting length, The interference arising from the proximity of the wind-
shield is governed by the position of this shield in relation to the "throat" of the wake, see figure 2.22,
Whitfield (1959) points out that the "transitional” wake may well require longer sting lengths than the 3
or so body diameters needed with the fully turbulent wake, and he suggests that the wind-shield should be
1 to 1.5 model base diameters downstream of the wake "throat", see figure 2.24. On the whole it is
probably wise to treat all these "rules-of-thumb" with reservation, since so many factors can influence
the flow, particularly when separation upstream of the base is involved as it may be when the rear of the
body is tapered.

Finally we must point out that the transient nature of the flow in an impulse tunnel also poses some
unresolved problems related to the time any flow takes to become established. The point we wish to draw
attention to is not the possible inadequacy of an impulse tunnel as regards establishing a steady flow
about certain shapes of test model, even in ideal circumstances, but rather the possibility that the
support and its aerodynamic shield may affect this flow establishment time adversely. In the absence of
experimental data, the designer of a force-balance must proceed with caution, noting that, on the whole,
separated flows are 1ikely to take longer to establish than attached flows, and that the former will also
result in more extensive upstream influence.
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CHAPTER 3
FORCE BALANCE TECHNIQUES

3a Introduction

The design of a force balance for transient measurements must take into account both its static and
its dynamic performance. As always primary consideraticn myst be given to ensuring that the design meets
its specification in so far as it is capable of doing its job. However, ease of operation is of
fundamental importance also, since a device which is complicated in use is likely to lead to frustration on
the nart of the operator, to mistakes and to time-consuming expense, For these reasons among others, it
is important that specifications be set realistically, not only in regard to resolution and accuracy, but
also range of operating conditions. In the present context for example, a balance designed for use in a
specific wind-tunnel to measure say, the thiee components 1ift, drag and pitching moment, is Vikely to
perform better in that tunnel than a six-component balance designed to cope with conditions appropriate to
two dissimilar wind-tunnels.

The first decision to be made therefore is how many force components. are to be measured simultaneously,

for the force-resolution system depends upon this. A design with a superfluity of linkages will usually
lead to errors arising from inadequate decoupling of the components, errors which may be avoidable by
reducing the number of linkages to that which is essential.

We may at the outset dismiss from consideration the old-fashioned beam-balance in which the
aerodynamic forces were balanced by a direct comparison with known weights. Necessarily most of the
balance in such cases is situated outside the tunnel, and even with a servo-system measurements would not
be possible in the test-times with which we are concerned. A number of other disadvantages, such as the
large tare weight of the model support system, the fact that the support struts must be shielded from the
flow and the need for pressure sealing, have already militated against such balances, even in general
practice, in favour of the "sting-balance" employing force-transducers. 1In these cases the "balance"
(the name has persisted) is situated either within a single axial strut {or “sting") supporting the model,
or within the model itself, the "earth-side" in the latter case being connected rigidly to the support.
Although minimising the aerodypamic interference the sting may seriously affect the flow by causing
premature boundary layer separation,

A balance designed to measure n (generalised) static force-components* will require a minimum of n
force-transducers. For example when only the static longitudinal behaviour of a model is of concern, as
in a symmetrical configuration, a balance having three force-transducers arranged as shown schematically
in figure 3.1 is necessary and sufficient to determine the normal force, axial force and the pitching
moment. In an ideal situation the axial force gives rise to an cutput from F2 only, while the normal
force and pitching moment are respectively proportional to the sum and difference of the outpuis from F,
and F3. When the "hinges" are imperfect, and in the gen.:ral case they need to be "universal joints"
with zero backlash and zero friction, an axial output at F, may arise from the presence of nomal force-
components or arbitrary moments. The hinges or pivots then are an important feature of the force-
measuring elements. The complete force-transducer generally consists of iwo basic parts; a suitably-
pivoted element which undergoes strain and a strain-sensitive device which produces an output, invariably
electrical, which is, ideally, proportional to the force to be measured, We discuss this "gauging”
problem separately, in Section 3.2, since the design of the complete force-balance or of individual
force-transducers depends upon the level of strain that can satisfactorily be measured. At this stege
we merely note that the performance constraints imposed by dynamic rather than static considerations
essentially 1imit the strain sensors to solid state devices.

In the succeeding Section 3.3, we examine the design of balances a:s a whole. Although the
desirable qualities of a balance are readily set forth and most of the pitfalls are well known, the
designer has a wide discretion We shall find that, having set out some of the basic design principles,
we can do little better than learn from the examples of our predecessors. Accordingly continual reference

* "Generalised forces" arc deemed to include "moments". In conjunction with "generalised dispiacements"
they are such that; work-done =,[Ei'dfi'
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will be made to designs reported in the literature,

The performance of a force-balance in a flow of short duration depends critically on the resonant
frequencies of the system as a whole - ihat is upon the combination of model, balance and supporting
structure, In essence either all these resonances must be outside a frequency range squivalent to the
flow duration, or at worst one such critical frequency may be removed by electrical filtering of the
outputs from the transducers. With twe critical frequencies, filtering is ditficult without lossas in
accuracy, and more than two are virtually impcssible to remove by filtering. Resort must then be had tu
acceleration-compensation. In Secticn 3.3 we discuss also the design of a talance and its support from
a dynamic viewpoint,

The transient nature of the system necessitates some method of automatic recording of the data.
With the output in the form of an electrical signa} we may take advantage of a number of modern devices to
amplify and filter the signal either before or after recording. We discuss the relative merits of several
systems in Sections 3.4 and 3.5,

A measuring system requires calibration, In the case of a multi-component force-balance,
calibration may be a complex procedure, which by its very nature does to some ¢xtent evaluate the
performance of the balance. This is particularly true where the interactions botween components are
concerned, Although the balance is required to measure transient loads, calibraticn is much more easily
carried out under static conditions. It is desirabie therefore that the halance be capable of measuring
static as well as transient loads. However it is alsv essenticl that dynamic testing be carried out by
way of calibration to ascertain the relevance of static calibrations to the dynamic situation. In these
circumstances it would be unrealistic to restrict the design of a balance by reguiring that it be capable
of static calibration. Instead methods of dynamic calibration must be sought. The final section of this
Chapter examines such methods.

3.2 Transducer elements

In this section we shall review the properties of those solid-state materials which are useful as
electromechanical transducers in force balances having a sufficiently good high-frequency performance for
use in short duration hypersonic wind-tunnels. HWe shall also discuss the way in which these materials may
be employed. As a general rule any transducer element in which a significant displacement is required
before a useful electrical output signal is generated is thereby inhibited from having a good high
frequency performance. Thus such devices as variable reluctance and variable capacitance transducers
have rot found wide application, though a commercial vibration pick-up based upon the principle of mutual
inductance with a frequency range up to 20 kHz is available.*

Materials most obviously suitable for transducer elements in the present application are those
with piezoelectric or piezoresistive properties,**

*  Tel Instrument Electronics Corporation, Model 501,

** Whether photosensitive devices could also be used as strain sensors is an interesting point on which a
designer might exercise ingenuity. Used in conjunction with a light-occulting system, the basic
principle of one possible device is clear, However the high frequency response requirements precludes
sianificant displacements of say knife edges or shutters. A further possibility which springs to mind
is the use of fine, parallel gratings from which pulses, and consejuently digital measuring techniques
might result. An obvious difficulty is knowing the sign of the strain which is taking place at any
instant.

A somewhat different approach was adopted bv Bratt & Wight (1944) in their proposal for an automatic
balance to measure varying forces. They suggested & Tight-occulting system which was to be used in
conjunction with a photo-cell to control the curirent in a coil suspended in a magnatic field. The
current needed to balance the displacement pfoduced by tne load is a measure of the load. They
suggest that such a system should be capable of operation at up to 20 Hz which is perhaps nessimistic.
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1 g Piezonlectric devices have perhaps received rather less attention than their potentiality warrants,
] % The property known as piezoelectricity, whereby carcain materials develop an apparent* alectrical charge

| when under mechanical strain is fairly well understosd (see, for exawple, the classic treatise by Cady,

5 1946 & 1964). MHowever-Cady's work is not easiiy assimilated and few efforts have been made to 'translate’

it into engineeriny terms, though the work of Mason (1947, 1950) and his colleggues at the Bell

Laborateries are notable exceptions. The reciprocal effect, applying an electrical potential to generate 1
mechanical strain, has received a good deal of attention, quartz oscillators being widely used as frequency
standards. The stability of quartz crystals and the phenomeral range over which thay are linear as far as
the piezoelactric effect is conceruned make them emirently suitable as transducer elements, and in recent d
years pressur2 transducers and load ceils using quartz have become commercially available.

Other piezoelectric materials have also been developed commercially over the last twenty years or
so, materials which are more sensitive than quartz, and which can be machined to a variety of shapes, ‘
2 though they are less stabie, less linear and pyroelectric, These are far from fully exploited but some
idea of their potential can be gauged from a recent discussion of their application to transient pressure
measurement {Goodchild & Bernstein, 1972). In the following saction, 3.21, we shall discuss piezoelectric

devices in some detail, since for the most part it is only the "bare" piezoelectric element which is
available commercially, It is up to the balance dosigner to incorporate such elements into force
transducers. ! ¢

The property known as piezoresistivity whereby materials underge a change in their electrical
resistance with applied mechanical strain is well-knowh to engineers, Wire and metal foil strain gauges
are familiar cevices in experimental stress aralysis. More recently, semiconductor strain gauges offering
much higher sensitivities have become available, but bacause they possess certain disadvantages which
complicate their use, thesy have perhaps yet to be fully exploited.

o

The literature on bonded strain gauges is fairly voluminous and gives details not only on their
construction, but also on how they should be bonded to the region where the strain is to be measured and
on suitable electrical circuits which make maximum use of their properties. To some extent therefore a
detailed account here is superfluous, with the works of Neubert (1967) and Dean & Douglas (1962) for example
widely available in addition to comprekensive data produced by the manufacturers.

i Zain, e s 25

Several reasons may be put forward however for including ratner more than just references. The
most cbvious is to make this work more “self-contained". From the balance-designer's and user's point of ' ;
view, this is clearly an advantage. It does moreover enable us to extract just those features of
particular relevance to the problem in hand. Again, an appreciation of the more fundamental characteristics ;
of the devices he is using should enable the user to interpret his results the more readily. From the
designer's point of view the "inhibiting effect" of what is commercially available may be diminished so
that novel applications are born in attempts to meet the stringent requirements of high sensitivity and
fast response.

v e Lmekd e

We therefore discuss piezoresistivity from a phenomenological point of view in a fairly full manner.
in Section 3.22. The resistance strain gauge of course is only an elemeut in the measuring chain, Their
lack of strength means that they cannot usually be used to react the total lcad component as piezoelectric
devices can. They need support, and it is the surface strain in these supports tc which they respond.

The force transducers, which incorporate not only the “"strain cell" and "strain sensor" but also a
mechanism for decoupling it from "off-axis" loads are clearly a very important part of the design, and
strain cell and sensor each play a part in selection of the other. It is however more convenient to
consider them separately for the obvious reason that much of the discussion on force transducers and
decoupling pivots is applicable to other strain sensing devices.

Accordingly the remainder of Section 3.2 will be devoted to discussing strain sensors only.

* The word "apparent” is used deliberately since on open~circuit there can be no net free charge on the
conducting surfaces of the dielectric, though a potential difference between them is generated by the
mechanical strain, The confusion arises from the analogy with the theory of a capacitor. The
“apparent charge" is that charge whose opposite would, on being applied, reduce the potential difference
to zero. The point is more fully discussed by Goodchild (1968).
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3.2 Piezoelectric materials

A piezoelectric material is one in which a change in the electrical polarisation takes place when
it undergoes a mechanical strain. When parts of the surface of the material are plated with a conducting
material, this change manifests itself as a potential difference across the plated parts. A typical
material may well produce 1 volt on open-circuit when subjected to a mechanical strain of order 10'7.

Thus Targe electrical signals may be produced with only mcderate stress levels, The converse effect also
occurs; an electrical potential applied across a piezoelectric material produces a change in dimensions,
so that an alternating voltage will induce a vibration.

There are two basic classes of piezoelectric material which hava found application in measuring
instruments, though many others are known. Some naturally occurring crystals such as quartz and
Rochelle salt and some synthetic crystals such as lithium sulphate and ammonium dihydrogen phosphate (ADP)
are piezoelectric. 1In addition there are the synthetic polarised ferroelectric ceramics such as the barium
titanates,lead zirconate titanates (PZT)f and lead metaniobate which behave in a similar way.

Of the crystals Rochelle salt, although somewhat more sensitive than quartz, is considerably more
affected by temperature and humidity and has a highly non-linear response characteristic, all features
which are undesirable in a transducer sensing element., Lithium sulphate monohydrate and tourmaline have
both been used to measure stress, but artifically-grown quartz has found by far the widest application,
alpha-quartz being the piezoelectrically active variety. Transducer sensing elements are cut from single
crystals, the "cuts" being designated by referring the major faces of the cut element to the crystal axes
together with the orientation of the remaining axes where these are important. Thus a 45°-X-cut crystal
has its thickness in the X-direction and the length of the plate is at 45° to the Y- and Z-axes. Such a
cut is illustrated in figure 3.2, The major faces normal to the X-axis of the crystal are plated or are
in contact with conducting material and it is across these surfaces that the potential difference appears.
In other applications a quartz plate is Y-cut with its thickness in the Y-direction; it is then used in
a shear mode, that is a potential difference appears when a shear load is applied. Clearly the potential
difference depends in general upon the orientation of the "cut" relative to the crystal axes as well as on
the manner of loading and the Tocation of the electrodes.

In the ferroelectric ceramics, the relation between the applied stress and the change in
polarisation depends upon the magnitude and direction of tne induced polarisation, The barium titanate
ceramics are made by compressing barium titanate powder into the desired shape and sintering it at high
temperature, Various additives may be used to improve some of its properties. The fired ceramic may
also be machined to shape. A permanent polarisation is given to the ceramic by applying a strong electric
field across it while it is raised above its Curie temperature, and then allowing it to cool slowly in the
electric field. The strength of the field and the cooling time for complete polarisation depend upon the
particular additives (see Anderson, 1963 Tor further details).

The relative ease of manufacture to almost any desired shape, their lower cost and the fact that
they have far higher sensitivities than quartz, make the ceramics particularly useful at low force levels.
However they suffer to some extent from aging and are more sensitive to temperature changes than quartz,
though the addition of small amounts of calcium and lead titanate not only reduces the temperature
sensitivity but improves the piezoelectric performance of the ceramics. Extreme conditions of high stress
and temperature can also lead to depolarisation. Quartz on the other hand is extremely stable and can be
used over a very wide range of stress level (1:106) remaining essentially tinear. Thus it is suitable
for use as the transducer element in a "primary" standard.

3.211  Some theoretical aspects

In order to discuss in detail the relative merits of different materials and element configurations
it is necessary to examine the equations which describe the behaviour of piezoelectric materials. The
important parametors are the mechanical stress tensor [2]' the strain tensor [§],the electric displacement
vector D and the electric field strength vector £. Any pair consisting of one mechanical and one
electrical quantity may be regarded as the independent variables and the others written as functions of
these two., Any of the resulting four pairs of equations may be used. For the present purpose it is

* Copyright trade name of ceramic manufactured by Brush Clevite Co.
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convenient to use [g] and E as the independent parameters. Assuming a linear relationship between the
electric displacement and the mechanical stress which causes it, we may combine this "piezoelectric
property equation" with that for a dielectric relating D to E to give

D

i e o

(4]
i = dijk“jk + °ijEj (3.1)
where the superscript 7 denotes that the dielectric permittivity €4 is to be evaluated at constant stress.
The quantities dijk are the piezoelectric constants of the material and we use here the suffix notation

for cartesian tensors, the summation convention being implied by repeated suffices appearing in any product
of terms.

4 e

For a material which obeys the generalised Hooke's Law, it may be shown that inclusion of the effect
of the electric field on the strain leads to

.
, Si5 % Siikeke

P

!
+ dkij E, (3.2)

1
P
4
4
E

1 where the fourth order tensor sgjke is the elastic compliance which is to be evaluated at constant electric
field. These equations are given in full together with the other three pairs of equations in a classic

paper by Mason (1947). It is perhaps pertinent to point out at this stage that these other equations ,

involve €ij and s?jkt among other quantities. Which values are used in any given situation depends upon i

‘ the boundary conditions. However Mason (1947) gives values which show that for quartz the differences are !

' small though for Rochelle salt they approach 50% for some components. For the ceramics the differences

e

Y

between some elastic compliance components is of order 10% so that the electrical boundary conditions
strictly affect the strain corresponding to an applied stress system. Likewise some of the components of
the dielectric permittivity differ by about 20% for ceramics, so that the mechanical boundary conditions
govern the solution of the electrical problem to some extent. However for transducer design these . !
difficulties can be ignored, since ultimately the transducer performance depends upon other factors as well,

and needs to be determined by calibration. 3

Assuming weak electro-mechanical coupling then, and neglecting the electric field external to the
piezoelectric material, it is possible to show that the voltage generated is L

Yy o= Q/, = -%;IB(dijkagk E,)dB (3.3)

where c0 is the static capacitance, Q the apparent charge, ogk the stress distribution in the eleccrically-
free element and I% is the field produced by unit applied voltage to the mechanically-free element, the
integral being taken over the volume 8 of tha element. Thus °§k and E} are solutions of a purely elastic
and purely electrical problem respectively.

In the majority of transducer applications the piezoelectric sensing element is essentially a thin
nlate, that is the thickress t, in the direction 03 say, normal to the conducting surface is small. In
this case E; =E, = 1/t so that equation 3.3 becomes

PR s

o ’}
€..A
vy - --l-js(dajkogk)dB (3.4)
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where A is the area of a plated surface.

Because it closely approximates most cases of interest and also because it affords a considerable
simplification we shall use equation (3.4) throughout most of the remaining discussion. In essence the
procedure adopted is to insert °°k as the solution of a purely elastic problem in order to determine the
potential difference V or the apparent charge Q. These solutions of the elastic problem are usually
approximations themselves since isotropy is commonly assumed though piezoelectric materials are essentially
non-isotropic. In addition it is common practice to ignore either some of the stress components or the
compatibility of strains in determining the solution of the purely elastic problem., Thus several
) approximations are involved in determining the sensitivity of a transducer sensing element, but for design
‘ purposes where we seek to compare different configurations, these are not serjous.

i Before cxamining different configurations, we may ncte that the sensitivity depends directly upoh
: the magnitude of the piezoelectric coefficients dijk' Other properties however are also of importance.

; Thus account must be taken of (i) the relative permittivity, and specific resistivity which have a direct
: . bearing on the low frequency characteristics since they determine the natural time constant of the sensing
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element, (i) the elastic constants and the mass density which determine the natural frequencies of the
element, and (iii) the changes in the behaviour of the material which occur with change of temperature.
Because piezoelectric materiais are not isotropic, the properties must be referred to a specific set of
axes which avoid ambiguity. These may be crystallographic or polarisation axes anc some care is necessary
regarding the rélation between these axes and those used in the stress amalysis. We shall employ
*transducer axes" which simplify the stress analysis; these do not necessarily coincide with the
crystallographic or polarisation axes and where they do not the equations for the transformation of tensor
components must be used in order to substitute the appropriate coefficients into equaticn (3.4), for
example,

E ; It is very common to find, particularly in the commercial literature, that a "restricted tensor
& i notation* is used, This restricted notation is possible because of various symmetries which exist; for
] : example there are only 6 independent strain components making up the strain tensor. The relationship

l between the two notations is given by Mason (1947) and by Nye (1957). In this restricted notation,

; equation (3.4) becomes

b'— ‘! v {eg3 . 1 d d
i =} =0 =--3% JB( 3n°n) B (3.5)
- n=1,2, .e.. 6
where 03 is normal to the plated surfaces. ’

The properties of some selected piezoelectric materials are listed in Table 3.1, Table 3.1(a)
sets out the components in a matrix form which clearly brings out the symmetries; for example the ceramics
are symmetrical about the polarisation axis 03, Table 3.1(b) gives some typical numerical values which
may be used for initial transducer design, but because constant improvements are being made in the
production of the ceramics, the designer should refer to the manufacturer's latest literature. Many
piezoelectric materials are also pyroelectric, that is a potential difference is piv.iced as a result of
thermal strain. Moreover the properties depend to some extent on temperature, that is the piezoelectric
coefficients themselves are temperature dependent. Much of the effort involved in selecting quartz
crvstal "cuts" has been expended in trying to find one with a near-zero temperature sensitivity. In
ceramic production, additives have been sought which reduce the deficiencies arising from temperature-
dependence. In this respect the lead-zirconate titanates are a considerable improvement over the
barium titanates.

3.212 Low frequency characteristics

The low frequency characteristics depend upon the natural timz constant of the material. For the
simple configuration of thickness t and plated area A we may write

j P,.t €l
- .33 _ 3
R, %~ and C, = _%i_ (3.6)
so that the natural time constant

t = ROCo = 9335;’3 (3.7).
Here P33 is the specific resistivity between the conducting surfaces* and RO js the resistive impedance.
Orders of magnitude for p and t are included in Table 3.1 from which it can be inferred that quartz has a
somewhat longer time constant than the ceramics and therefore a superior low frequency performance. As

we shall see later (Section 3.6) this eases the problem of transducer calibration.

3.213 High frequency characteristics

The transient response of a measuring system depends chiefly on jts natural frequencies. With
force balances the natural frequencies which cause most concern are usually those of the larger parts of
the system as a whole, particularly where the model upon which the aerodynamic forces are being measured
is sting-mounted. The reason is that these natural frequencies are usually lower than those of the
transducer element, and it is not easy to eliminate these lower frequency components without cutting off
the higher frequencies also. However for some force components, drag for example, a well-designed balance
may have only a single prominent vibration mode to which the force-sensing element responds and when this

+ see Section 3.22
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response to vibration is "eliminated" using acceleration-compensation, the vibration of the transducer
itself may become significant. Although the construction and design of the transducer as an entity
governs its lowest natural frequency, with some designs the natural frequency of the transducer sensing
element itself may assume importance. The same is true of accelerometers,

Accordingly some discussion of the natural frequencies of piezoelectric sensing elements vibrating
in various mcies is justified. We shall consider here the natural frequency fo of the sensing element
alone, Later we shall draw attention to the way in which loading of the element affects the vibration
characteristics. The modes of interest involve longitudinal compression waves, transverse shear waves
and bending vibrations. The longitudinal compression waves may be parallel or normal to the axis of
polarisation and these are discussed separately.

3.2131 Compression waves paraliel to the axis of polarisation

A convenient way of describing the transient response of an element is to outline its behaviour for
a particular input function; 1in the present case a step input is appropriate. The ressonse to such an
input will depend upon the transit time T of the wave through the element and upon the way in which this
wave i3 reflected from the back face. When the back face is "free" the reflected wave is of opposite
sense to the incident wave; that is, an incident,plane compression is reflected as a rarefaction, or
extensional, wave. In this case the element returns to its initial state after a time 21t and the
corresponding value of frequency is that usually quoted by the manufacturer of the piezoelectric element

since he usually has in mind the common application as an electrical oscillator when mechanical loading is
kept to a minimum.

However for a "rigid" backing, a wave of like sense, equal in magnitude to the incident wave, is
reflected, The corresponding period before the element returns to its initial state is 4rt. khen the
backing material is “matched", that is, it has the same acoustic impedance, no wave is reflected at all,
but when the input wave form is sinusoidal, the full output is first reached after one-quarter of a cycle.
This suggests that for the applications we have in mind, a natural frequency for the element corresponding
to 4rt should be used. The appropriate velocity v of wave propagation is shown by Redwood (1961 a) to be
identical to that for a non-piezoelectric material. This is given by

D
2 =
v 033/9 (3.8)

where o is the density of the material and the elastic constant ¢ is evaluated at constant electric
displacement, the axis of polarisation being 03.

3.2132 Compression waves normal to the axis of polarisation

In this case the transit time depends upon the velocity of waves in a direction perpendicular to
the axis 03 of polarisation. Redwood (1961 b) shows that in this case the appropriate elastic constant
is to be evaluated at constant electric field, so that

E
2 =
v c11/° (3.9)
Again on physical grounds it may be argued that a natural frequency corresponding to four times
the wave transit time (in the 01 direction) is appropriate. Although this mode is rarely used directly

because the sensitivity is poor, it may be necessary to consider it when taking account of the "cross-axis
sensitivity” of a transducer.

3.2133 Transverse shear waves

Whereas with plane compression waves the displacement of a particle takes place in the same
direction as the wave motion, with shear waves the particle displacement is in a direction normal to the
wave motion. For a system with axial symmetry only one type of wave travelling paraliel to the axis of
polarisation is possible, For waves moving in directions normal %o this axis, two types are possible:
one in which the particle displacement is normal to the axis of polarisation and one in wh1ch it is parallel
to it. The wave speeds appropriate to these three cases are respectively (c“g/p) . (CSG/p) and
(C““/p) , the external circumstances determining whether these should be evaluated at constant electric
field or constant electric displacement. However in practice a shear element can only be loaded by a
force transmitting device of some kind. This may take the form of an "anvil" which is kept in contact
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, with the piezoelectric element by preloading to such a degree that frction suffices to transmit the force.
E : The mechanical loading due to the additional mass of the anvil has a considerable effect on the natural

] frequency of the transducer, so that differences between cE and cD are of minor importance. Indeed the
natural frequencies given by the above wave speeds may only ba taken as a fairly crude guide to those of
transducers which make use of the shear mode.

1 3.2134 Bending modes

Lewis (1961) has shown that to a first approximation, the natural frequencies in bending of a beam
of piezoelectric material are the same as those for non-piezoelectric matertal with identical elastic
properties. Unfortunately however the readily available solutions for the frequencies in bending all
assume that the beam is of a material which has isotropic elastic properties. To make use of these simple
solutions we must decide which of the elastic properties of the non-isotropic piezoelectric material are
best 1ikely to describe its behaviour in bending, The comwonest -element configuration used in transducers

‘ employing the bending modes are thin plates or beams polarised across the thickness direction 03. The

| restoring forces then arise as a result of the tensile and compressive stresses along a direction normal to

03. For a material with axially-symmetric properties about the axis of polarisation, the appropriate

9 elastic constant would be C,,- Comparison of this case with that in which compressive waves are propagated
normal to the axis of polarisation would suggest that this should be evaluated at constant electric field,

i so that the appropriate wave velocity is aiven by

v = CEl/p (3.10).

XA

Rl

3.214 Sensitivity of a selection of transducing modes

We next examine a variety of sensing element configurations, in particular those illustrated in 1
figure 3.4. We assume that the axis of polarisation lies along 03 and we shall consider the sensitivity 'ﬁ
to a uniformly distributed pressure p or to a point load F as appropriate. With some configurations one
is more easily achieved than the other. The static capacitance co also has to be considered as this has
some bearing cn the design of the associated electronic amplifier.

s

We shall illustrate the application of equation (3.5) hy reference to the configuration of figure
3.4(a) in which a thin plate of thickness t is subject to a load F in the 03-direction, uniformly
distributed over the surface area A, To a first approximation the stress field is given by ﬂ

o, = 0 forns3; o, = F/A (3.11) ’ 1

where we neglect any constraints arising from the way in which the sensing element is fixed in the ,
transducer.

oy

f Substituting this stress field into eguation (3.5), only one term arises, giving

1 =
3 Q = -zfe(d”qa)da = -4 F (3.12).

Defining a sensitivity to force by QF = Q/F we find that for this configuration
0 = -d,, (3.13)

so that in this direct compressive mode, the sensitivity to force depends only upon the piezoelectric
constant d33 of the materials

RPNV S ev.! by

o Y

3 The static capacitance Co is given by

_ @
Co = caaA/t (3.14)

* Care must be taken when substituting numerical values for d33. For piezoelectric ceramic elements
it is usual to choose 03 as the direction of polarisation so that d33 is also the symbol for
poiarisation axes. For quartz on the other hand, X-cut crystals are usually used for the direct

compressive mode, and the appropriate piezoelectric constant is usually designated d11’ the
crystallographic OX-axis coinciding with the transducer 03-axis.
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so that the voltage sensitivity to force, defined by VF = V/F, is

3 td

33
Ve

[+
Regy

(3.15).

It would appear that by increasing the thickness t of the sensing plate, an increase in voltage sensitivity
to force may be obtained. However we shall see later that the charge sensitivity QF is somewhat more

-

E important than VF and in addition increasing t increases the wave transit time through the element thereby

i reducing the natural frequency which for this mode is given by

e

E £ o= -C-gi- (3.16) i
3 1 0 K53 P . . :
3 ' There is however a useful method of incrcasing the sensitivity of the normal compressive mode, ‘
3 This consists of building a "stack" of sensing elements with their polarisation axes co-directional, these

elements being connected electrically in parallel, as illustrated in figure 3.5(a), Using equation (3.12) ‘

) we see that for a stack of N identical plates

3 . QF = - Nd33 (3.17).
F ! The natural frequency however is inversely proportional to N, so that the product QFfo is

independent of the number of plates in the stack. This suggests that the product of charge sensitivity

and natural frequency is a useful measure of the performance of . mode, It is analogous to the product '
of gain and bandwidth as a performance figure for some classes of electronic amplifying systems, The 3
product QFf0 must however be used with some caution by the Jesigner seeking a suitable transducer mode.

It is not simply a question of choosing the configuration with the largest value, since that configuration

may not meet the sensitivity requirements, for example. For the stack of elements in normal compression,

one could choose an overall thickness Nt consistent with the required natural frequency, and then make up ;
this thickness by choosing N as large as is practicable to increase the sensitivity. In a similar way ]
one may determine the sensitivity to force, the natural frequency and the static capacitance of the other

configurations illustrated in figure 3.4, The results are summarised in Table 3.2.

The plate undergoing transverse compression is essentially similar to that in direct compression,
but for ceramics the piezoelectric constant dax replaces d33, thereby reducing the sensitivity hy a factor 3
of two or three. Consequently this mode has found littje application though a configuration which
consists of a thin-walled ceramic cylinder polarised radially could prove useful. For X-cut quartz the
appropriate constant, referred to crystallographic axes, is d12 which is equal to -dll, and this mode has 4
some advantages. 1

'

For ceramics the shear mode arises as a result of the non-zero piezoelectric coefficient dlS’ a
shear stress o producing an electric field in the 0y-direction. For quartz the relevant non-zero
coefficients referred to crystallographic axes are dl“, d25 and dzs’ the electric fields arising from
the application of shear stresses 9,9 Ug and g respectively. A shear stress o, would need to be applied
to the Y- or Z-cut faces of the quartz element, but og and o, can be applied to the X-cut faces. Since
the piezoelectric coefficient d26 is some six times d25 = - dlu the Y-cut has the advantage so far as
shear sensitivity isconcerned.
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However dyg = - 2d;; for Gu2v.z and for ceramics d, . is somewhat larger than dy;, so that the shear
mode is potentially more sensitive than the direct compressive mode. A disadvantage of a practical kind
arises because some kind of pre-loading or cementing is nacessary in order to apply the load.

Again with ceramics a thin-walled cylinder is a useful variant; the load may be applied
tangentially to the inner face, say, the outer face being held fixed, see figure 3.4(c). Provided the ‘
wall is thin, the analysis for a fiat plate is valid to a good approximation and QF depends only upon d,, i
and not upon the dimensions ef the cylinder,

The sensitivity of the shear mode configuration may also be improved by "stacking" a series of
plates as shown in figure 3.5(b). The effect is analogous to that in the direct compressive mode case; i
the sensitivity QF is proportional to the number of plates in the stack, but the product QFfO remains
constant.
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The bending modes essentially make use of the transverse compression effect, and the sensing
elements must be of bimorph or sandwich construction. That is, two similar plates, with conducting
plating on their upper and lower surfaces, are connected electrically and mechanically at their common
surface., They are polarised in the thickness (03) direction. Applying equation (3.5) to the case of
a beam in simple two-dimensional bending, we find

-1 o t/2
Vs 9. A II { J (g0, )%, + I (d3)0,)dx, }dxl dx, (3.18).
33 Tarea -t/2 0

Since the simple theory gives

o, (X;s X,0 X3) = = 0,(x;, Xp» “X4) (3.19)
the voltage generated is zero, because the potential difference across the upper half is equal but opposite
in sign to that across the lower half, so that the upper and lower surfaces are at equal potentials. By
using a bimorph construction with appropriate electrical connections however, or by using bimorph plates
polarised in opposite directions (thereby changing the sign of dg, in one of the integrals of equation
{3.18)) an output may be obtained across the outer faces, see figure 3.4(e). The two configurations are
known as parallel- and series-connected. Clearly the series connection, which is the more practical, has

twice the voltage sensitivity to force, half the charge sensitivity and a quarter the static capacitance of
the parallel connection.

The simple theory of bending relates the stress o, at a distance X5 from the neutral axis to the
bending moment M2 and second moment of area 122 of the cross section by
M_x
273
0, = T (3.20).
1 22

Applied to the beam of length ¢ ana rectangular cross-section, this equation together with equation (3.5)
yields for the series connection

3d,,
Q = —% } My (x,)dx, (3.21).

This intey: - 15 proportional to the difference in slopes between the two ends of the beam (see any
standard te't in the bending of beams). Thus the end fixings should be such as to make this difference a
maximum; a beam built-in at both ends would have zero sensitivity.

A similar approach may beapplied to the bimorph disc configuration which may in principle either
be loaded uniformly or by a point load as shown in igure 3.4(f). The results listed in Table 3.2 for
this configuration were calculated by Goodchild (1968) using the values for the circumferential and radial
stresses given by Roark (1954).

A configuration vas *h responds directly to torsional loading also makes use of the bimorph beam
construction. In this case it is the chear mode which is involved (see figure 3.4(g)). The bimorph is
polarised across the beam, in the plane of the sandwich. For the series connection, the two parts are
polarised in opposite directions along the 03 axes. A torque produces a shear stress o, when the 02 axis
is along the beam. A field is then produced in the 01 direction, across the sandwich. Assuming that
the approximate distribution of shear stress is given by

-6M, !

g, = X (3.22)
4 at3 !

H
a
4
1
i
¥

where a is the width of the beam subjected to a torque Mz, and that t << a, we find ;

a/2 (1 (t/2  6Md
2 [ I j (- —= %) dx dxdx,

¢ 1 at?
-a/2 o o
where ¢ is the length of the beam.
Hernice

M,d, ¢

— (3.23)
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for the series connection. (By interchange of the 0y, 02 axes, the shear stress o5 is induced, and d,.
is the appropriate piezoelectric coefficient.) The piezoelectric constants d,, and ('dzs) are equal
for quartz and are non-zero. For ceramics they are zero.

3,215 Comparison between various configurations

In order to provide a more direct comparison between the modes and give some idea of the magnitude
of the output which may be expected, values of the properties of a typical ceramic, PZT-5A have been used
with the expressions in Table 3.2a to give Table 3.2b. The dimensions of the elements have been retained
as variables but this is not a serious obstacle to making comparisons.

For typical sizes, the compressive modes produce the highest natural frequencies and have a
moderate sensitivity, and the thickness shear mode is fairly similar. The bending modes however have a
greater sensitivity but a considerably lower resonant frequency. In practice a good deal depends upon the
ingenuity of the designer, who has to ensure that the load is transmitted uniformly, that the same
proportion of the total load is always reacted by the sensing 2lement and that loads of both signs can be
measured. We shall return to these topics in sections 3.23 and 3.24 where force transducers and
accelerometers are discussed in more detail, but they clearly have considerable bearing on the ease with
which any particular transducing mode can be utilised.

Other factors also are important, the most significant perhaps being the “"cross-axis" sensitivity
and the thermal sensitivity. Short term thermal response can be minimised by good design, the sensing
element being kept well insulated from the surroundings, but any leng-time drift in the characteristics
which affects the calibration is best avoided by careful selection of the sensing element material,

Quartz is probably the best from this point of view but frequently its sensitivity is inadequate. Lead
metaniobate appears to he the least thermally sensitive of the ceramics, but its piezoelectric coefficients
are only some 15% of the best of the lead zirconate titanates commercially available at present.

Cross-axis sensitivity can be controlled to some extent by the designer. Apart from choosing
sensing modes which have small inherent transverse sensitivity, careful attention to detail can minimise
the amount of any transverse loading that is reacted by the piezoelectric element itself.

The thicknes: shear mode of the ceramics has some advantage as regards cross-axis sensitivity.
Polarised along the direction 03 and pla.ed on the surfaces normal to 01, the thickness shear mode makes
use of the piezoelectric effect associated .'ith the coefficient dls‘ No other loading on the eiement
produces an electric field along 07, so that .ny cross~axis sensitivity which does occur will be due to
imperfections of some kind. One disadvantage (f the shear mode is the difficulty of providing reliable
load transmission. Cemented joints have not beei. found entirely satisfactory (Goodchild & Bernstein,
1972) but a bolted design has baen successfully deva~ed for a commercially-available accelerometer.*

3.22 Piezoresistive materials

A1l solid materials possess electrical resistance - that is, when an electrical potential is
applied across two points, the current which flows is finite. The magnitude of this electrical resistance
varies widely from one material to another. Moreover for some materials, the resistance depends upon the
direction of the potential gradient in relation to the internal structure of the material. In general,
single crystals will exhibit non-isotropic conduction of this kind, and the formal relation batween the
electric field vector E, and the current density vector i, shows that the resistivity must be a tensor
quantity of rank two, The materials of particular interest as transducer elements are some metals, some
metallic alloys and two semi-conductors, one based on germanium, one on silicon. The metals and alloys
are essentially in polycrystalline form and are more or less isotrupic conductors in the unstressed state,
so that € and i are co-directional. Single crystals of germanium and silicon have a cubic structure and
they too are isotropic conductors when unstresced. In the pure state they have a high resistiviy,, and
might then be regarded as "insulators" rather than "conductors”. The addition of small amounts of
impurities however, lowers their resistivity ccensiderably; hence the term "semi-conductor" is appiied to
these crystalline materials when they are "doped" with certain specific impurities which act as extra
electrical charge carriers.

* Gulton Industries, Inc.
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The resistivity of a.semi-conductor is inversely proportional to the number of such charge
carriers and their average mobility. Thus the specific resistivity can be controlled by adjustment of
the impurity level. The effect of a mechanical strain {s to alter the effective mobility of the charge

< carriers, and consequently the resistance. The strain in general distorts the structure of the crystal

1 ! and so the mobility is not atered jsotropically. In additio: the dimensions of the specimen are also

‘ changed, and the resistivity changes on both counts. For the polycrystalline metals, the effect of the
dimensional changes is always important and usually dominant. For semi-conductors a few per cent only
of the change in resistivity arises from this source. Of particular importance is that the sense of this

3 change in resistivity may be either positive or negative depending on the specific impurity used. This

3 eqables the construction of compound gauges which offer some advantages as we shall note later.

g Changes in temperature also induce dimensional changes and affect the mobility of the charge

carriers. Consequently the resistivity changes with temperature, more markedly for semi-conductorc than
for the metals. Temperature changes therefore give rise to an “apparent strain" which can be
misinterpreted when these materials are used as strain transducers. The effects must be minimised and
allowances of some kind made for them if necessary.

The important fcatures of a strain transducer are its sensitivity, the linearity of its
characteristic defining curve and the extent to which these are altered by environmental changes and by
aging. The sensitivity is usually expressed as a "gauge factor" G, giving the ratio of the fractional
resistance change of the strain gauge to the mechanical strain producing it. For metallic gauges this
gauge factor is between 2 and about 12, though cormercially available gauges generally have G = 2, The
gauge factor of a semi-conductor strain transducer depends upon which mode is used, as we shall see in the
next section, but it may be as hich as 170. Gauges with such high sensitivity are however somewhat
temperature dependent, By increasing the concentration of charge éarriers to something of order 102%/cm3
the gauge factor becomes more or less independent of temperazure but is somewhat Tower in magnitude,
perhaps 50 to 60, It is also less strain dependent; that is, Tinearity is improved by perhaps an order
of magnitude, so that the reduction in gauge factor is worth tolerating. .The impurity level also affects
the temperature coefficient of resistance which may therefore be controlled. In the majority of
applications the strain sensor is bonded to a load-carrying member and it is the surface strain of the
latter which is sensed. Tailoring the temperature coefficient of resistance to that of the material
forming the load-link has clear advantages, and gauges are available, matched to commonly used materials.
On the whole the ratio of temperature sensitivity to mechanical strain sensitivity is about the same for
silicon gauges with G = 50 as it is for metallic gauges with G = 2, so that semi-conductor gauges have
clear advantages where signal levels are marginal, or when it is necessary to keep the strains in the force-
linkages to a minimum to improve the overall performance of a multi-component force-transducer,

Because of its mono-crystalline nature, silicon, which has largely superseded germanium on account

of its greater stability, is virtually free of hysteresis and creep, though creep may arise from stresses
[ in the bonding material, The fatigue life of silicon gauges is somewhat better than that of metal wire
gauges, but not so good as that of metal foil. Repeated strain may also change the sensitivity to some
extent and produce a zero drift. Rohrbach & Czaika (1961, R.A.E. translation) found that 10°% cycles of 1
t2x 10'3 strain produced a change in the gauge factor of less than 2% and a zero change of order 10'5 4
strain in a silicon gauge bonded with Baldwin EPY-150 cement. Changes of this magnitude can be handled
; by periedic calibration,

Strain-gauges are avaitable commercially in a variety of shapes and sizes, and in most cases the 4
balance designer will find some of these suitable for his purpose. Moreover the manufacturers' literature ?
is generally helpful as regards such topics as cementing the gauges in position, and in the use of '
electrical circuit arrangements to minimise non-linearities and compensate temperature changes. Modern
manufacturing processes involving surface diffusion techniques enable single crystals to be p:oduced, only
L parts of which are effectively piezoresistive (Pfann & Thurston, 1961). This has already led to the
commercial production of "integrated” pressure transducers, in which a silicon diaphragm has diffused
impurities which enables its deflection to be sensed.  Although unsupported semi-conductors, acting as
4 complete 1oad cells in the sense that they react the total load as well as detect it, are difficult to

envisage because of their relative brittleness, very small integrated accelerometers would appear feasible, :
; We shall therefore digress slightly at this point to consider piezoresistivity from the phenomenological A_i‘
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viewpoint in a manner analogous to that cf section 3.211 in which we considered piezoelectricity, To
some exvent the discussion which follwws is an oversimplification, because we assume a linear relation
1 between the change in resistivity and the stress (or strain) producing it. The characteristics of
semi-conductor strain gauges are in fact non-linear, but this does not affect the general features of
such devices, to which we now turn.

g 3.221 Some theoretical aspects

f For a general, non-isotropic electrical conductor, the equation linking the potential gradient E
2 and the current density i is written in the form of a generalised Ohm's Taw

Ei = py5 ij i = 1,2,3 (3.24)
the Cartesian summation convention being implied, and the suffices referring to orthogonal crystal axes.
Only when pij = 0 for i ¢ j and Pry = Ppp = Pg3 = 9 is there isoqropic conduction. Such is the case for
polycrystalline metals and crystals having a cubic structure in the unstressed state. The resistivity
coefficients Pij are dependent upon both temperature and stress, prchably for all materials, but

particularly for semiconductors. We are concerned hare primarily with the stress dependence, which we
assume to be linear. Following Geyling & Forst (1960) we write

v

Ei = {055 * mijke %kl T (3.25)

i,ibks2=1,2,3

where Opy are the components of the stress tensor and ™ ike are those of a fourth rank tensor known as the
piezoresistive tensor, As with the piezoelectric properties a number of symmetries exist, and certain of
the piezoresistive coefficients vanish when referred to crystal axes. For materials which are isotropic
conductors in the unstressed state, further simplifications are possible, and taking advantage of the
"reduced tensor" notation of Voigt (c.f. Mason, 1947) yet again, we can define a new set of coefficients

L by
0 ™1 T Miann 3P0 12 % Miaza B P Tuy T 2Maa2s (3.26)
etc., both s and t taking the values 1 to 6. The factor 2 in the shear stress coefficients arises because
each term appears twice in the formal relation (3.25). Written in full, and taking advantage of the
symmetry, equations (3.25) take the simple form
El . . .
] ;; = 1,0+ 1,0 * nlz(cz +0,)} + im0, + 13m0 (3.27)
Ez . . s
3 Py im0 + i1+ im0, 4wy, (0) + o))} + im0, (3.28)
E,s : . R o
;; = im0 Fim o % 13(1 om0, F "12(01 + 02)} {3.29) 5

where 9,20, 0,0,

the shear stresses.

’ and g, = 0y, re the direct stresses and o, =0,,, 0, =0, and 0, = 0,, are ;

The terms (n,0,1,)s (m},0,i,) and ("11°3i3) are those which arise ordinarily with metal strain
gauges, where the potential field gradient, current flow and stress are codirectional. The remaining
terms represent the cross-coupling arising from the more complicated behaviour of a stressed crystal

lattice.

In conventional applications a slender cylinder is subjected to a load along its axis, the potential
4 gradient also being applied between the ends. This uniaxial system, with E;, i; and a; directed along
axis 01', is not necessarily such that 0j' is a crystal axis. In fact the piezoresistive effect can be
maximised by suitable orientation of 01' in relation to the axes of the crystal 0123, that is by suitably
cutting the filaments from the crystalline blank, HWriting

- 1]
3 E; = po'i;('l + nzal} (3-30)

to define the "longitudinal piezoresistance coefficient” L it can be shown that (Mason & Thurston, 1957)
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Ty T Mg TR, ot 2z, + :

12
where Li40 represent the direction cosines between axes 0i and 0i'. Clearly the magnitude of L depends
upon the relative orientation of the axes. Mason & Thurston (1957) show further that t has an extremum
along lines specified by

e Ty T, = /-% (3.32)

the [111]-axes®, provided either

LI and (nu“ +w,, - "11} have the same sign,

12 (3.33)

or, 2fm,, + LV RS M

Otherwise the extremum value occurs along a crystal axis, that is [100]-axes.

The magnitudes of the coefficients Ty Ty and Ty depend upon the base material, the impurity and
the impurity level, the latter being particularly important for semi-conductors. Some typical values are
listed in Table 3.3 for doped germanium and silicon. It may be noted that n-type silicon does not satisfy
the inequalities (3.33) so that the gauge factor G; has its largest value, which is negative, along |’W0|
crystal axes, The well-known expression for the gauge factor G is

6 = SBR _ o0 - s e (3.34)
gt 1 osl 1 1
1 01

where S; is the mechanical strain along 0y', v, is Poisson's ratio and 6R/R is the fractional change in
gauge resistance. For semi-conductors the term G; is clearly dominant, since comparison of equations
(3.30) and (3.34) shows that

G;=—£—G =

=x, Y = m (3.35)
21
poS)

4
L 2

5}
where Y; represents Young's modulus appropriate to this uniaxial stress system**. Values of m, = G;
are included in Table 3.3,

So far we have only considered the longitudinal effect, in which o; s E; and ii are co-linear,

Both the transverse and the shear effects can also be utilised, and several possible devices have been
described by Pfann & Thurston (1961). For cubic crystals such as germanium and silicon, the piezo-
resistive coefficients referred to crystallographic axes can be written as a 6 x 6 matrix, many elements
of which are zero, and only three are numerically distinct:

* These are the "Miller indices" used to define planes and directions within a crystal lattice, see
for example, Moffatt, Pearsall & Wulff, 1964).
** Since the gauges are used as strain rather than stress tensors, it is perhaps more logical to define
an "elastoresistivity" tensor [@] in place of [z]. The two are of course related, through the stiffness
tensor [c], by the doubly-contracted tensor product [m] = [x] : [c]. Again many of the coefficients
s 5k are zero and only three independent quantities exist for cubic and polycrystalline structures
so that the analogous equations tq (3.27-29) take the form

E
) R R s
;; = 11{1 + m1151 + mlz(s2 + Sa)) + 12mws6 + 13mw55 etc.
With My =M, Ty T G Gy

= = = = = = +
mlz m21 ml3 m3l m23 m32 ﬂllc12 ﬂ12(cll * Clz)

3
1
=2
t
1}

e ” Mss = Meg = TyuCuy

The longitudinal elastoresistance coefficient m, is found in a manner analogous to -
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-
oM Ty, O 0 0
Ty Ty T O 0 0

M2 My "y O 0 0

[x] = (3.36).
0 0 0 Ty, 0 0
0 0 0 0 L 0
0 0 0 0 0 n

However when referred to arbitrary axes, all 36 may be ron-zero and any one can be made quite large for
highly anisotropic materials like doped Ge and Si by a suitable choice of axis system. The matrix now
has a typical element LAY (s',t' =1', 2", ... 6'). The transverse piezoresistance coefficients are
those which give the relative change in resistivity resulting from a simple direct stress which is normal

to the current density vector, namely LY ANE L ANE S AW and Toagh = Mo These coefficients
are related to those of equation (3.36) by equations of the form
= = - - 2 2 2 2 2 2
Mgt T Mg =4 ("11 LI "uh){zll' o0 ¥ 112' 1221 + £13| 223J (3.37)

where L4t again represents the direction cosine between 0i and 0i'., Two types of shear coefficient may
be distinguished. In one the electric field and current are in the same direction, in the other they are
normal to each other. Thus, suppose the electric field and current are along 01', A shear stress aé
then produces a resistance change when the coefficient LAY is non-zero. The same shear stress cé may
also alter the ratio of E; to the current density 1; along 02' via the coefficient Tetghe Shear effects
of the first kind, in which the electric field and current are co-linear, will have the first subscript
(on n) 1', 2' or 3'; effects of the second kind are described by piezoresistive coefficients having both
subscripts greater than 3'. For a general orientation

3 3 3
Mgt = 2Mgeye = 2my, -y, - "uu){lxl' S TURILIPUR LI Y 123'} (3.38)
and

- - . 2,2 2,2 2,2
Torgr = My + 20myy = m, = Me e 4 20 20 H 2 2] (3.39)

with analogous relations for the other coefficients (Pfann & Thurston, 1961). Either one may choose
orientations to produce a maximum effect, or one might choose to use an element in such a way that
secondary effects are minimised. For example the quantity in curly brackets which appears in equations
(3.37) and (3.39) varies between 0 and 3. Thus Tiap OF its analogues can be made to vanish if

N

TN

0 <= my/(mpy = Fyp = M) 5'% (3.40).

Using the values quoted in Table 3.3 we see that this is possible for p-Ge, n-Ge and n-S5i but not for p-Si.
Gauges of the first three materials may therefore bz designed with zero sensitivity to transverse direct
stress, although the longitudinal sensitivity will be less than the maximum possible for the material.
Pfann & Thurston {1961) describe & number of possible arrangements containing multiple gauges already

1 connected to form two (active) arms or even all four (active) arms of a Wheatstone bridge. Among the 3

Py

advantages claimed for the Tatter are enhanced sensitivity; automatic compensation for thermal effects,

whether produced by changes in gauge resistance with temperature or by differential expansion between the

gauge and backing material, and simplicity since no external bridge resistors are needed. Moreover,

hydrostatic pressure and contraction of the bonding material affect all arms of the bridge equally and so 3
do not alter its balance.

The examples are too numerous to be described here in detail, but especially noteworthy are the
suggestions for torque transducers and for a cantilever of high resistivity material the upper and lower
surfaces of which have diffused impurities to Increase the conductivity where the strain due to bending is
] greatest. Such beam elements are commercially available and might well be used, as Pfann & Thurston (1961)
suggest, as the heart of an accelerometer, Most of their suggestions do not seem to have been adopted
yet by the manufacturers of strain gauges. This {is particularly unfortunate in the case of the complete
bridge consisting of two p-type and two n-type gauges in a square formation,

] 3
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3.222 Low frequency characteristics

Piezoresistance devices respond to static loading and so the question of their low frequency
behaviour does not really arise. In this respect they have a considerable advantage over piezoelectric
devices. Static calibration of piezciesistive transducers can be readily carried out, but it may be
necessary when deing so to take account of a number of factors, such as zero drift and thermal sensitivity
which need not affect their performance as dynamic devices.

3.223 High frequency characteristics

The application of resistance strain gauges to the measurement of forces and accelerations in
impulse tunnels necessarily involves a discussion of their response to transients. We have noted already
in connection with piezoelectric sensors that the natural frequencies of the transducers are likely to be
somewhat higher than those of other elements of the system, though on occasion ‘they may also assume
importance. However the question arises here in a different connection, in that one might well enquire
as to the relevance of a static calibration to the response of a transducer to a transient input. Put in
another way, we may ask how the gauge factor G is affected by the strain-rate.

Experimental investigations on metallic strain gauges have been conducted by Cunningham & Goldsmith
(1959), Nisbett, Brennan & Tarpley (196G) and by Koshiro 01 (1965).

Cunningham and Goldsmith examined the response of strain gauges mounted on both steel and aluminium
bars when these were subjected to the impact of a steel ball. They concluded that the response time ™
was less than 7 us for the steel-mounted gauge and less than 10 us for that mounted on the aluminjum bar.
By measuring also the impulsive force using a piezoelectric device they concluded that the gauge factor

remained constant for T > Jus.

Nisbett and his colleagues vibrated a steel bar in the longitudinal mode, and using an independent
optical method for measuring the strain, concluded thut the strain gauges mounted on the bar had the same
gauge factor up to a frequency of 23 kHz.

Koshiro 01 subjected bars to step-like strain pulses by loading them slowly in tension until brittle
fracture occurred at a notch, The strain pulse was detected by two pairs of strain gauges along the bar.
Because he gauges are of finite length L, the idealised response to the step would be a ramp of duration
L/v where v is the speed of sound 2long the bar, figure 3.6(b). In practice the response would be
somewhat as shown in figure 3.6{(c). When the overshoot is small it is more practical to specify the
risetime (actually, the strain falls in this case) t, as that beiween the 104 and 90% ampTitude levels.

For the idealised response this would give T = 0.8 L/v.

Koshiro 0i's measured rise times for wire gauges of length L = 3 mm and foil gauges of length
L = 7 mm mounted on steel were somewhat longer than is indicated by this relation, being about 1.6 us
and 1.0 ps respectively. This was explained as due to the finite time of crack propogation leading to a
somewhat “rounded-step" strain pulse, However he .concluded that for bonded metal strain-gauges

T, < 0.5 ys + 0,8 L/v.
From static and dynamic measurements of the gauge factor he found differences of the same order,
3-5%, as that betwecn gauges from the same batch,

Using the relation ‘rfc = 0,35 to define the frequency fc at which the ratio of output/input is
1//Z, we find for gauges mounted on steel (v = 5.1 m/us)

[SESRST 4

L/mm ] 3 10

fc/kHz 530 360 170

Of course the gauges cannot be used at this frequency without large corrections; for the gauge factor to
be within 1% of the static value, the frequency must be limited to about fc/G. It is probable that a
frequericy of 30 kHz will be higher than other resonances in the measuring system as a whole, so that in
practice the usable frequency range will be cut-off below this.
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Thus for force measurements iv impulse tunnels the response time of bonded strain gauges is not
likely to be a serious limitation on the frequency response of the measuring system as a whole.

Although no measurements relating to bonded semi-conductor gauges are known to the writer, the
discussion above is expected to apply to these also, since the inherent response time is extremely rapid.

For unbonded gauges in which the sensitive regions are simply areas of diffused impurity on the
surface of a crystal, the response times may be calculated in a similar way to those of piezoelectric
elements, (section 3.213).

3.224 Practical aspects of using piezoresistive strain gauges -

The essential difference between piezoelectrical and piezoresistive devices resides in the fact
that the former are active and the latter passive in the sense that piezoresistive devices require an
independent supply of energy. 7o this extent the associated electrical circuitry is more complicated for
resistance strain gauges, but they do have the great advantage that they can be calibrated s*atically.
Signal levels are lower than with piezoelectric sensors, which is occasionally a serious problem even for
dynamic measurements, but their low impedance is an advantage when it comes to amplification. The main
difficulty in utilising them lies in providing a suitable load bearing 1ink upon which they can be mounted,
because they are not generally suitable for reacting the total load as piezoelectric devices are,

Since bonded metal strain gauges first became available more than thirty years ago a voluminous
literature has appeared, which reflects the collective experience concerning their application, In
addition the manufacturers issue pamphlets containing sound advice on how to obtain the best results from
strain gauges. It is not our purpose to summarise this literature here - indeed it is often attention to
detail that ensures good results, and such detail is inevitably omitted from a summary, Rather do we draw
attention to some of the more important points which arise in the present application, and recommend both
the designer and the user to the early monographs of Perry & Lissner (1955) and of Murray & Stein (1958),
the collection of articles edited by Dean (1962), the work of Dorsey (1964), the review by Higson (1964)
and Neubert's (1967) fairly recent monograph.

3.2241 Environmental problems

The electrical energy supplied to the strain gauges is of course dissipated as heat. 1In
operation the circuits are usually switchea on some time before a test and the system is allowed time to
reach equilibrium, Calibration is ordinarily carried out under atmospheric conditions whereas in operation
an impulse tunnel is evacuated, so that the temneratures in the two cases may be different. Where the
gauge factors are strongly temperature dependent it will be necessary to take account of this. The vacuum
environment may also affect the cement used to attach the gauges to the load link. Organic cements are
potentially subject to evaporation, sublimation or even decomposition at low pressures and should be
avoided. The evidence is fairly scanty, but Henny (1965) reports that in tests carried out at ultra high
vacuum, epoxy resin based cements are generally satisfactory, though some care is nacessary in mounting the
gauges, so that air bubbles are not included. Such inclusions may well expand as the pressure in the
tunnel is reduced and the effective calibration may be altered. Careful attention to detail will probably
obviate most of these problems.

3,2242 Temperature compensation

Although it is common %o dismiss thermal effects as comparatively unimportant in dynamic measurements,
they can assume serious proportions during calibration. For multi-component balances, where a multitude
of interactions have to be investigated, such calibrations can occupy several hours, and if zero drifts
also have to be monitored continually, this time can be doubled. Where space is available on a load link,
further gauges can be used not only to provide temperature compensation, but also to reduce the effects of
non-linearities. Most of the methods devised for use with metal strain gauges can also be used with semi-
conductor gauges. Indeed one of the best known is somewhat more readily applied with semi-conductor
gauges than with metal gauges. It relies on having a second gauge which undergoes the same temperature
changes but is not subject to the same strain. Several variations are possible with metallic guuges.

The second gauge may be mounted as a dummy on a block which remains unstressed; it may be so mounted on
the specimen as to suffer a much smaller strain, for example close to the main sensor but at right angles
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to it; or when the strain field is suitable the two gauges can be subjected to equal and opposite strain,
By suitable connections in the bridge circuit, the thermal effects cancel; the strain signal in the last
case will be doubled.

The last method is considerably easier to use with semi-conductors since gauges with positive and
regative gauge factors are available and the strain field does not have to be of a special type. Matched
pairs of gauges made from n-type and p-type material mounted on the same backing, are in some manufacturers’
catalogues; usually they are so arranged as to minimise the zero drift arising from the differential
thermal expansion between the silicon gauges and a particular force 1ink material such as steel, Two such
pairs connected to form a2 four-arm fully-active Wheatstone bridge could also be suitable, as we shall see
in section 3.41, for reducing non-linearities in the system.

To the extent that the gauge factor is a function of temperature, the sensitivity will change with
temperature. The elastic moduli of transducer materials such as steel and aluminium alloy also vary a
Tittle with temperature, and semi-conductor materials are available commercially, in which the temperature
coefficient of the gauge factor is just sufficient to compensate this change, so that the output signal is
proportional to stress rather than strain.

3.2243 Non-linearities

Non-linearities in the system can arise from three sources, since the strain-gauge transducer, or
load-cell, is really a chain of three transducars. Initially the load gives rise to a strain, the strain
is converted by the elastoresistive device to a change in resistance, and by means of an electrical energy
supply this is converted into a change of voltage. Any or all of these conversion processes may be non-
linear; here we are concerned with the second and third.

Metallic strain-gauges are linear over a very wide strain range, but some semi-conductor gauges
are markedly non-linear even over fairly small ranges of strain. Mason, Forst and Tornillo (1962) suggest
an equation of the form

R - G,S + 6,57 + 6,5° (3.41)

to describe the behaviour of silicon, the coefficients G, G2 and G, being inverse functions of temperature
as well as dependent upon the doping level. For a typical strain-gauge material Dorsey (1964) has shown
that the cubic term contributes only about 1% to the relative resistance change at a strain of 10-2, 50
that this term is negligible for practical purposes. He finds as fairly typical, that (at 298K)

g% = 120 S + 4000 §2 (3.42)
for p-type silicon
and %B. = =110 § + 10 000 52 (3.43)
0

for n-type silicon

so that non-linear effects are serious even at fairly low strains, and should be taken into account. It
is not possible to eliminate entirely this non-Tinearity, but the effects can be minimised (i) by careful
matching of the gauge pairs in the Wheatstone bridge circuit arrangements which are normally used, (ii) by
the use of special circuit arrangements in which the non-linearities are of opposite sense to those of
equations (3.42) and (3.43), (iii) by restricting the strains to very low levels, a maximum of 10’“ say,
and (iv) by using low resistivity gauges which are more nearly Tinear, but which have lower gauge factors,

The third method, which can of course be used in addition to the first two, has much to recommend
it. The signal levels will be correspondingly smaller, thus reducing non-linearities within other parts
of the electrical system, and the deflections associated with such small strains are also advantageously
small. The high sensitivity of semi-conductor gauges enables one to resolve such small strains accurately
and relatively easily.

Strain-gauges of lovw resistivity materiais are also available in which the non-linearity is very
small, ¢ 0.02% or less over a strain range of 2 10'3. These gauges are of p-type silicon, and have a
gauge factor of order 50 rather than the 100+ or so of the more common types. Such gauges are necessarily
of the 1ow resistance type, 60-120 0, and the signal is therefore 1limited for a given power dissipation,
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since the bridge voltage is restricted. However because greater strains are allowable, the balance of
advantage for transducer applications probably lies with gauges of this type. We describe some of the
circuit arrangements which may be used in section 3.41,

3.2244 {Choice of strain gauges

For balance applications it is important that interactions between components should be minimised,
and this generally means keeping the deflection of each load-1ink, or force transducer, to a minimum.
The implication is that strains should be small, so a high conversion factor from strain to output voltage
is required. High sensitivity gauges are therefore an advantage provided other disadvantages are not
thereby introduced. In comparison with metal wire and foil gauges, semi-conductor devices are more than
an order of magnitude more sensitive, but are more temperature dependent and the relation between
resistivity and strain is non-linear for the majority of such gauges. For dynamic measurements
temperature effects are not usually serious, but where calibrztion takes a long time, temperature
compensation may be necessary. The restriction to low strain-levels also minimises the problems which
arise from non-linearities, but where a reduced sensitivity :s acceptable highly linear gauges are available
some 25 times as sensitive as metallic gauges.

Where space is available for only a single gauge, a p-type gauge of moderate gauge factor should
be used, since this type of gauge is less non-linear than a gauge made from n-type material. If it is
known in advance that the strain will be predominantly of one sign, advantage can also be taken of the
fact that p-type gauges are more nearly linear for positive than negative strains, the reverse being true
for n-type gauges. P-type materials on the other hand magnify the effects of temperature changes; the
positive gauge factor produces a signal proportional to the differential expansion between the semi-
conductor and the load link which has the same sign as that due to the change in resistance with
temperature., A negative gauge factor will of course reduce this zero drift, but in the laboratory
applications of present concern, the environmental temperature is relatively constant and the maintenance
of linearity probably of greater importance.

The choice of a strain gauge is therefore goverred by a number of factors and it cannot be made
independently of other decisions. As we have implied earlier, it is the performance of the balance as a
whole that is important, and it is of little use ins®sting say, on metallic strain gauges because of their
better linearity, if in order to achieve a reasonable signal level the deflections within the load-cells
become non-linear functions of the load., Some prccedure must be adopted which optimises the overall
design, In general it is probably wisest to favour low deflections because interactions as well as
non-linearities are thus minimised, so that the more sensitive semi-conductor gauges are preferable to
the metallic gauges, Even though the usable linear strain range of some of these gauges is less than half
that of metallic gauges, the gauge factor is so much higher that for a given noise level in the system,
semi~conductor gauges offer much better resolution.

Thus if one assumes as typical, a resolution of 50 yV (see section 3.42) and a bridge supply of
3.6 V giving 30 mA for a 120 @ bridge, the resolution in terms of strain is about 0.14 x 107 for a four
active-arm bridge (section 3.41) using semi-conducts gauges and about 7 x 1076 for a bridge using 120 @
metallic gauges. With maximum strains limited, very conservatively to say, # 10" for the former and
+ 1072 for the latter so as to keep within the linear range, the working range is some 700:1 for semi-
conductors and only 140:1 for metallic gauges. In fact semi-conductor gauges linear over the same strain
range, 10'3, are available with a gauge factor of about 50 compared with the 2 for metallic gauges.
For the same noise signal, the operating range will be 25 times as large for the silicon gauges, that is
3500:1, One should in fairness point out however that metallic gauges of higher resistance could be used
with a correspondingly higher bridge voltage to increase the signal level and hence the working range.

3.23 Force transducers

The force transducers or load-cells are of course the vital elements of a balance, and it is largely
upon their performance that the accuracy and ease of operation of the system depend. They must satisfy
a number of conditions which in many cases conflict with each other so that the overall design must be a
compromise.,




n

In the first place they must fit the available space. Thiy particular requirement has led to the
wide adoption of the "single-piece" balance, in which each of the force transducers is strictly an integrai
part of a single piece of metal, which is so machined that the force components are more or less uncoupled
from one another. Although any particular force-transducer is materially contiyuous with the other parts
of the model support, the Tinks are highly compliant in all but one degree of freedom, Tc this extent
we may regard each force transducer separately whether it be part of a single~piece balance or literally
a separate element which is incorporated into the system.

The prime purpose of a force-transducer is that it produce some kind of output, usually electrical,
for a load input, and ideally this output should be a linear function of only one load component, that
along its “axis of sensitivity". In other words the cross-axis sensitivities, or interactions, should be

i minimal. Hysteresis should be absent and the performance should be repeatable and independent of
environmental changes such as variations iu temperature, pressure and humidity,

Additionally, ruggedness and ease of construction are great advantages, the latter particularly
making it more Tikely that the characteristics are controllable, so that more than one example having a
given nominal performance can be built.

Necessarily some deflections must occur within the system under the action of the aerodynamic
loads; indeed it is some of these deflections which are measured by the sensors. These deflections must
remain small, since large deflections are not consistent with measurements on the given configuration
which is changed when such movements occur. As it happens, small deflections are consistent with low
interactions and non-linearities are also minimised by keeping the deflections small, Signal levels
however are correspondingly reduced making the sensitivity to other changes more important.

The number of possible transducer configurations is virtually unlimited, and it is in this part
of the design that most ingenuity can be exercised. Some particular types have been widely used with
considerable success in continuously operating wind-tunnels, and there is no a priori reason why many of
these should not be suitable for transient measurements in impulse tunnels. Piezoelectric sensors
: however do not seem to have been used in steady flows, and because transducers incorporating such devices
P are rather different in kind from those employing piezoresistive sensors we shall consider the two
3

separctely., They do however have some general features in common, the most important of which is the way
in which the load is transmitted to the transducer as a whole, As we have noted each transducer should
be sensitive to a single load component, and this means decoupling it from the others. This is
accomplished in one of two ways: either pivots are provided which are stiff in the load sensing direction
only, or each sensor is so positioned that the strain it senses results from a single component of the

l load only. Essentially the two methods are identical, but in the former positive steps are taken to
increase the ctiffness presentad along the sensing axis to all but one of the load components. These pivots
are vital parts of the complete measuring system, but are conveniently considered as parts of the load
cells. We shall however defer a discussion of the pivots untii section 3.233,

[ In the discussion which follows we give brief descriptions of some of the force transducers that
have proved successful. HWe also make one or two general suggestions that we hope will be found sufficiently
stimulating to make the prospective designer reach for pencil and paper.

3.231 Piezoalectric force~transducers

The design of a transducer is governed to a large extent by the output signal level that may be
conveniently resolved. We shall see later that so far as piezoelectric transducers are concerned, the
charge amplifier has some advantages over the voltage amplifier, and that such ampiifiers are readily ]
available with sensitivities up to 100 mV/pC. Assuming a fairly realistic noise level of 100 uV - lower
values can be achieved by careful design and selected components - an output signal of 0.1 pC may be
4 resolved to within 14, It is this value of 0.1 pC then that largely decides the transducer configuration
and the force sensor material. Smaller signals can of course be handled, but probably only with Tower
resoluticn on a routine basis.

The materials most suitable for use as piezoelectric sensors are quartz and the ceramics. Quartz,
despite its relatively low sensitivity, is in many ways preeminent. Its charge sensitivity to force, ]
3 expressed by the piezoelectric coefficients (dim)’ is constant over a vary large stress range - of order b
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105. The dependence on temperature is small; d,, varies by between - 0.05%/K and 0.02%/K over the

temperature range - 200°C to 200°C. Its single crystalline form means that hysteresis is negligible and
its characteristics are readily repeatable from one specimen to another, the crystals being grown

3 artificially under carefully controlled conditions. It may be used at temperatures up to 500°C and at
stress levels up to about 4 x10° N/m? (Spescha & Volle, 1971). It is very stiff, having elastic moduli
of order 10!} i/m? and so deflections are negligible. The insulation resistance is of order 10!* ohm

for a typically-sized element, so that Tong time constants - in excess of 10% s in practice ~ make static
calibration of quartz transducers possible. Apart from its low sensitivity the main limitations arise
from the need to utilise particular cuts from a single crystal. Even so some ingenious transducers have
been produced which circumvent this restriction. The sensitive modes of quartz are the parallel and
transverse direct stress modes, expressed respectively by the coefficients d11 and dlz' and the shear modes
corresponding to the coefficients d,, = - d,; and d,.. As may be seen from Tables 3.1, d,, = - d,, and
dyg = -2&11 (see Spescha, 1971 for a simple theoretical explanation of this) which is numerically some six
times greater than d,,, so that the Y-cut crystal, plated on the faces normal to a Y-axis, is suitable as
3 ‘ a sensor to the thickness shear stress o,.

i i g

The .sensitivity to a direct stress may, as we have noted, be enhanced by stacking several discs
elecirically-connected in parallel. Although preloading is necessary to ensure a response to tensile
forces, there is a tendency for such stacks to come apart under such loads, and this can result in non-

i

! uniform loading and a lack of repeatability which in a dynamic situation may appear to be hysteresis. The

[ transverse mode has definite advantages so far as quartz is concerned. The charge sensitivity to force 4

i Qg of a stack of N X-cut discs is simply

|

{ QF = Ndn (3.44). ]
k ! On the other hand, a rectangular bar used in the transverse mode as shown in figure 3.4(b) has a force ' 3
E sensitivity
¢ ' 0 = dlz(b/a) = - dll(b/a) (3.45)

so that the force sensitivities of the bar and the stack may be made compzrable. The natural freduency ,
of the bar and the stack will be much the same if b = Nt, and the problem of elements coming apart does :
not arise. Kistler Instruments AG have successfully used the transverse effect in pressure transducers
(Spescha & Volle, 1971) but they do not appear to use it in load cells.

f; Kistler do marke . range of load cells and three-~component force~platforms, some of which might
L be incorporated directly into an aerodynamic force-balance, though many are either too large or of

1 unsuitable shape. These load cells are based either on quartz rings as shown in figure 3.7 or on discs
t connected mechanically and electrically in parailel as illustrated in figure 3.8. Two Kistler type 901A
E~ load washers, the smallest in their current range, with an axial load capacity of 15 kN have been used

1

together with the somewhat larger type S03A in a three-component balance at Douglas Aerophysics Laboratory
(Griffiths*). Although this larger 1oad cell has a capacity of 60 kN, its resolution, 0.01 N and its

] sensitivity, 4 pC/N are claimed to be the same as those of the smaller 901A, which is 8 mm thick and 14 mm
s in diameter, excluding the microdot coaxial connector. Some care needs to be exercised in applying the
load and a series of special adaptor washers is available. According to equation (3.33) the charge
sensitivity to force does not depend on the dimensions of the sensing element in this parallel mode, and 3
it is moreover independent cf the point of application of the load, However so as not to exceed the

maximum working stress level anywhere in the crystal, the quartz is sandwiched between accurately ground
steel plates, and it is probably wise, for the same reason, to apply the load fairly uniformly. The
central hole enables the cell to be preccmpressed during installation using a simple bolt; tensile forces
can then be measured.

I

; ‘ Kistler also market a transducer, type 9251, which resolves a general force input into three

perpendicular components., It is small, 10 mm thick by 24 mm square (excluding the three microdot i
connectors) and uses three pairs of quartz rings, one pair in the parallel mode and two pairs in the shear
mode, as shown in figure 3.9. (The use of pairs in a symmetrical arrangement is a good general principle
since second order effects are thereby cancelled.) A more useful load-resolving platform for wind-tunnel

F | * private communication
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applications would perhaps replace the compressive rings by an "in-plane" toi’que sensor, though the small
E , size makes the multiple disc arrangement of figure 3.8 somewhat difficult. A "sectored" array, figure

3 3.10, might be easier to construct, and has in fact been usad with a piezoelectric ceramic (Duryea &
Martin, 1966).

The crystal axes of a quartz specimen may be accurately determined with the aid of an X-ray
goniometer - a task performed by the manufacturer of the cut quartz elements. Accurately-cut quartz
shear elements are not sensitive to loads in any other direction, so that additional mechanical decoupling
of such loads is not necessary. However in order to transfer the shear load to the quartz, one must use
either a cemented construction, or rely on friction, in which case preloading is necessary. Spescha (1971)
suggests a friction coefficient of 0.15, so that the quartz must be precompressed by a load nearly seven
tires the design load capacity of the transducer. Such preloading is easily applied if the transducer
has a central bolt-hole, as in the Kistler designs. If however the general external load on the
measuring system involves a tensile force in the preloading bolt as well as the shear component to be
measured, the maximum Joad measuring capacity will be reduced even though the sensitivity to shear load
remains unaltered. This point needs to be borne in mind during design, and where troubles are envisaged,
mechanical decoupling in the form of pivots can be provided.

e

"

Thermal problems are not usually serious in dynamic situations. Provided the sensors are well

- insulated from the hot-flow environment of the hypersonic impulse tunnei, no difficulties should arise in
3 most test situations. Quartz is not pyroelectric and the piezoelectric ccefficients are insensitive to
temperature. However in any multiply~-connected structuse, stresces can arise as a result of differential
thermal expansion of the parts, and such stresses will appear as a charge output indistinguishable from
that due to a true external load. Such charges can be eliminated by "grounding" the output terminal of
the transducer immediately prior to a test. This procedure should be standard in wind-tunnel tests
involving piezoelectric devices, and could also be used during calibration, incremental values being
always measured. Although such a method is perfectly sound, and indeed has much to recommend it since a
force change of one newton in the presence of a load of one meganewton can be measured by this technique,
it is probably wise to design transducers with some compensation for differential thermal expansion.

Such compensation is easily provided by interposing washers between the quartz and the loading plattens,
of a mc’erial having a suitable thermal expansion coefficient; 1in this way the maximum lcad capability
of the transducer can be more directly related to the maximum stre<s level in the quartz.

The piezoelectric ceramics are considerably more sensitive than quartz, and have the particular
advantage that they may be machined, or otherwise formed, to any desired shape. Machining is probably
best carried out before polarisation, but this is not always convenient, and with care it can be done
afterwards. T201 forces should be kept lTow since high stress levels lead to partial or even total
depolarisation. Where the effects of machining are localised within the ceramic element, the performance
of the transducer is likely to be very sensitive to minor constructional .riations. A lack of
repeatability bdween nominally identical transducers will then arise even though the sensors are cut from
the same piece of bulk material. On the whole piezoelectric ceramics are more temperature sensitive than
quartz. rThe effects arisein two ways ~ the ceramics are usually pyroelectric, and the piezoelectric
coefficients are functions of temperature. Some data for two lead zirconate titanate ceramics, Glennite
G-1278 and 6-1500*, and a lead metaniobate ceramic Glennite 6-2000% are reproduced in figure 3.3, The
most promising of these materials appears to be G-2000 [only data for the transverse coefficient d31 nre
given by the manufacturer, but the behaviour of the other coafficients, d33 and dl5 is presumably similar]}.
Although the magnitudes of the piezoelectric coefficients of G-2000 are somewhat lower than those of the
i others, its Curie temperature is higher, and this may be an advantaj< where an interference fit is used in
1 assembling the tranmsducer, as is suggested later. MNew materials are however constantly being introduced,
and reference should be made to current catalogues befsre a material is finally selected.

1 The piezoelectric cnefficients of ceramics are not entirely independent of stress-level; that is

“ne ceramics are noen-linear as force-transducers. Over a modzrate range of stress however, the coefficients
[ are sensibly constant, and transducers should be designed with this limitation in mind. To increase the
load capacity, the size of the sensing element should be increased to keep the stress within the linear

] * Trade-names for preducts manufactured by Gulton Indust. Inc., U.S.
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range, Information on the extcnt of this linear range is not usua’ily given in manufacturers' catalogues

i and may not always be known, which makes the designer's task difficult. Martin, Duryea & Stevenson (1962)
in describing their force balance mention the range (~10 & 2)MN/m2 for the preloaded PZT discs they
employed, but they give no source far this information.

b Ceramic discs, rings, plates and sectors of discs can be used in much the same way as quartz, the
appropriate coefficients being d33 and d31 for direct stresses, which produce an electric field parallel

to the a. s 03, of polarisation, and d,g for the shear stress o which produces an electric field E,.

For cerami  |d,,| is somewhat smaller than |d,,|, so that the transverse mode is not quite so useful.
However othe shapes are also possible. As with quartz, the shear mode is most attractive, since

1 mechanical de »upling is unnecessary. A thin-walled tube, polarised axially and plated subsequently on

K. the cylindrica surfaces wiiich form the electrodes, see figure 3.4(c), has some constructional advantages
because of the axial symmetry, but if it has to rely on cemented joints to transfer the load it may not be
possible to make full use of this configuration (Goodchild & Bernstein, 1972). The possibilities of

using interference fits should be investigated, but the assembly temperatures must be limited to values well
below the Curie temperature, since polarisation canrot be carried out afterwards in this case. Electrical
isolation of one part of the system from the others may also be troublesome with this configuration but it
should be possible to apply a thin insulating layer of epoxy resin say, over both plated surfaces before
assembly. This would have two advantages. The electrical lead wire, welded or soldered to the plated
surfaces, could be embedded in the resin, and the surfaces could be machined to closer tolerances than the
+ 0,125 mm typically specified by the manufacturers of the ceramic tubes. A more uniform interference fit
could then be obtained, but of course no compensation for differential thermal expansion can be provided,
though this is not serious. But for the preloading due to the interference fits, one has virtually
reproduced the cemented joint construction, the epoxy being the cement; it should be possibie however to
remove any surplus prior to assembly in this case.

Because of their theoretically zero cross-axis sensitivity, shear elements can be built directly
into a multi-component force-balance without further decoupling, and such a balance - the K~balance - has
been constructed at Cornell Aeronautical Laboratory - see section 3.31. To make full use of the inherent
decoupling of shear mode transducers, alignments are fairly critical, particularly during the manufacture
of the sensors. The silver electrodes must be deposited on faces normal to the 0l-axis after
polarisation along the 03-direction. Duryea & Martin (1966), describing the experience at Cornell, suggest

; that some care is required in ensuring a uniform poiarising field, strictly parallel to the faces to be

i silvered, and they lap the surfaces of their PZT ceramic elenents to ensure parallelism within 0.013 mm,

! Electrodes are formed by vacuum deposition on the lapped surfaces; a smooth electrode is thus obtained,

i This method was deliberately chosen because it avoided heating the ceramic. Even so they found a much

| Tower sensitivity than expected which they could only ascribe to partial depolarisation resulting from

i radiant heating of the ceramic by the boat containing the silver in the vacuum deposition plant. They

; devised a radiation shield for subsequent cases, but give no clue as to its success.

|
f

Compressive elements using either the direct or the transverse mode, require mechanical decoupling
of some kind since direct stresses both parallel and normai to the axis of polarisation produce an electric
field ;. It should be possible to accomplish this decoupling simply by ensuring that the element is

| unrestrained in directicas perpendicular to 03, and this principle is behind the design of the Cornell
Aeronautical Laboratory's K-balance. In their cther balances {Martin, Duryea & Stevenson, 1962) and in
a similar balance at the Technischen Hochschule, Aachen (Schaguhn, 1970) several "conventional® force-links
with decoupling pivots Five been used to make a six~component balance. These sorce-links are basically
ceramic discs ~ or rathe*, rings - clamped, and thus pre-loaded, between pressure plates as illustrated
ﬁ; in figure 3.11. These pressure plates are slotted in such a way that only axial loads are transmitted
efficiently. The ceramic sensing element of a typical Toad cell in the Cornell Aeronautical Laboratory
balances, is a PZT disc of diameter 15 mm and thickness 2.5 mm, having a central hole to accommodate the
3 preloading screw. The ceramic is prestressed to about -10 MN/m2, the preloading screw being locked in
‘; position by a transverse set screw, and the Tinear working range is given as ¢ 2 MN/m2, equivalent to a

load of about ¢ 350 N. Electrical leads are soldered to the edges of metal plates adjacent to the
silvered faces of the disc and mylar (melinex) spacers are used to insulate the element from the plattens,
and thereby from the remainder nf .o c¥stem. Further spacers are used to make up the overall leagth of
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the capsule to that required for the assembled balance. A number of similar capsules, the size varying
with load capacity requirements to keep the stress within the linear range, ara used to make up the complete
balance (see section 3.3), In their later paper, Duryea & Martin (1966) report that some unexplained

J interactions in the Cornell Aeronautical Laboratory's balances using these force capsules were alleviated

by removing the silver plating from the ceramic, lapping the surfaces and resilvering by vacuum deposition
s0 as to obtain smooth electrode surfaces. By implication they recommend this procedure in general
circumstances, and employed it, as we have noted, in the construction of their K-balance.

The bimorph bending~-modes have been used successfully in high-sensitivity pressure transducers
(Macdonald & Cole, 1963; Goodchild & Bernstein, 1972) but not, so far as the writer is aware, as part of
a force-link, They offer very high sensitivity, albeit at reduced natural frequency, but (more important)
k at the expense of increased deflections. Moreover their capacity for withstanding overload is not so good
) as that of the other modes, so that stops would probably be necessary to limit the deflection.

‘ Nevertheless in very low density flows where the high sensitivity required makes all other modes unsuitable
it may be possible to make use of one of the bimorph configurations. One schematic arrangement using a
bimorph disc is illustrated in figure 3.12(a). The disc is supported on a post which passes through a
ce .iray nule and is clamped on both sides, so that 1nads can be transmitted in both directions. The edge
fixing must approximate the pinned condition, and to achieve this the central electrode extends beyond the
ceramic, forming a kind of diaphragm., Although the centre post must not make electrical contact with this
central electrode so that the transducer terminals are the upper and lower attachment points, this is not
cnvenient, because the load cell would need to be electrically isolated from the balance structure.
Separate wire connections should be used together with insulation in the most convenient places, such as
under the nuts on the centre post. Clearly a numbei of practical constructional difficulties need to be
overcome but the promise of sensitivities of order 10" pC/N means that such devices merit serious
consideration.

More easily assembled arrangements using a bimorph beam can also be envisaged, but do not possess
the advantages of axial symmetry. Such beam elements can be used as the basis of a sensitive accelerometer
and we shall illustrate this application in section 3.24. Again in very low level force situations one
may conceive a balance in which the connection between the model and the support is via a system of
cantilever beams which are themselves piezoelectric bimorphs. Such an arrangement for a three component
system is illustrated schematicaliy in figure 3.12(b). The success of such an arrangement would depend
to some extent on whether it were sufficiently robust to handle ac well as on any of its more obviously
necessary requirements. It would also be relatively difficult to seal a balance of this kind, in order
that its performance remain unaffected by environmental changes. Humidity and dust in particular can
have serious effects on the low frequency performance of transducers having a high impedance.

Piezoelectric materials are dielectrics of very high specific resistivity. Any charge separation
which appears as a result of mechanical strain wil? leak away at a rate which depends upon the effective
time constant of the transducer in combination with the associated electronic circuit. The time constant
¢an be made relatively independent of the capacitance of the transducer and its connecting cable by using
a "sharge amplifier”. It may be further controlled, within limits, by components within the amplifier
feedback network, so long as the resistive impedance of the transducer is very high, The specific
resistivity of quartz and of the ceramics is large at room temperature, though it falls very rapidly
with rising temperature, see Table 3.1(b) and figure 3.3. To maintain the insulaticn resistance of a

3 transducer at correspondingly high levels requires careful design and special precautions during assembly.
4 The design should be such that the sensing element is hermetically sealed, since surface moisture will

j lower the electrical resistance drastically. A perfect seal is nece..ary, since an inefficient seal is

3 worse than none at all. A leaky seal will allow moist air to enter, but provides a poor escape for any

condensate. Baking is nat recommended for most piezecelectric transducers, not only becau.e of possible
depolarisation of the ceramics, but also because Tow-melting point solders are often necesserily used
in their construction.

In some cases the simplest method of sealing is to encase the clean, dry piezoelectric element in
an insulating shroud, though epozy resins may not always be suitable because they have a tendency towards
electrical instability under load, (Neubert, 1963, p.337), HMoisture can also affect other paris of the
electrical circuit within the transducer, which is often small, and a sealed overall construction is to
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be preferred where this is possible. Assembly is best carried out in a "laminar-flow" cabinet, in which
the atmosphere can be maintained dry and dust-free.

Again to realise the full potential of piezoelectric transducers operational cleanliness is also
necessary, a frequent cause of poor performance being dirty connections at such points as the small
"microdot" coaxial connectors.

3.232 Piezoresistive force-transducers

Although unbonded wire strain-gauges have been used in some pressure transducers, they are not
really suitable for use in force transducers since the number of wires needed to react a typical load
component would make construction impractical. The semi-conductor materials are rather brittle in bulk
form and, except in very special circumstances, they are also unsuitable in situations where they need to
react the total load. Strain-gauges are therefore used to sense the surface strain on a load-bearing
1ink of some kind, and the design of a piezoresistive force transducer is largely concerned with the
design of such links. In comparison with the minute strains needed in piezoelectric materials to
generate a measurable signai, piezoresistive transducers are relatively deflective. However to ensure
that the strain gauges remain within their linear range, it is necessar; to restrict the strain levels.
Typical maxima are 1073 for metallic gauges and 0.5 x 10'3 for semi-conductor gauges though there are
advantages in having a lower maximum for the latter. In most circumstances the deflections associated
with such strains are acceptable, but it is important to appreciate that it is the overall deflections of
the balance system which are relevant, not just those at the gauge positions.

Two approaches are open to the designer of a force-balance., He can use individually-designed
load cells, a number of which are assembled to measure as many of the six components as are required, or
he can devise a "single-piece" balance in which, as the name implies, a single block of metal is so
machined that the surface strain at particular places results, ideally at least, from only one load
component. In practice, there are usually interactions between components, and the designer aims to keep
these to a minimum. In many cases this can be achieved by an application of the principle of symmetry,
whereby the first order interactions are cancelled usi /g two suitably-positioned sensors, the outputs of
which are added or subtracted, depending upon the particular configuration and the 1oad to be measurad.

The simplest load transducer is the tension/compression 1ink in which a prismatic bar has a pair
of strain gauges, one affixed to each of two opposite faces as illustrated in figure 3.13(a). Pivots are
provided at each end of the 1ink to decouple other than axial loads, but with the gauges connected in
opposite arms of a Wheatstone bridge circuit, for example, (see section 3.41) the strains due to bending
are theoretically cancelled. The effects of temperature changes are not however cancelled by this simple
arrangement, though the addition of a second pair at right angles to the first, as in figure 3.13(b) will
provide compensation for temperature changes and slightly enhance the sencitivity. As an alternative,
matched pairs of p~ ami n-type silicun gauges can be used in a four active~arm bridge as described in
section 3,2242,

This simple load 1ink has many advantages so far as measurements in impulse tunnels are concerned.
It is compact, fairly robust, easily constructed and above all it has a high inherent natural frequency.
Such links often constitute parts of a single-piece balance. It does however possess disadvantages, The
need to dissipate the electrical energy supplied to the gauges sets a minimum to the volume of the tension-
link., The length of thz 1ink is determined by the need to fix the gauges, which incidentally should occupy
as much of the available space as possible so that secondary variations in the strain-field are averaged.
The cross-sectional dimensions must be such that buckling does not occur under the expected compressive
loads. Although a buckled link will normally return to its original state when the load is removed, the
gauge itself may be damaged or its bonding affected. Particular attention should therefore be paid to
handling loads, when very siender 1inks are proposed.

So that reasoncble signal levels are obtained the strain gauges must be operated at reasonably high
strains consistent with them remaining within their linear range. For a link of given length and material,
the load capacity then determines the cross-sectional area. A sample calculation shows that the simple
prismatic bar would be suitable as a 1oad-link of mederate capacity. For example a Tink of capacity
t+ 500 N made from aluminium alioy would have to have a cross-sectional area of 7.5 mm2 to attain a strain
level of ¢ 1073 at meximum load. With such a strain, metallic strain-gauges could be used, but such a
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small cross-section is impractical for a prismatic bar in compression and little can be gained by using
other shapes such as the H-cross-section which is sometimes employed. By using the more sensitive semi-
conductor strain gauges, the cross-sectional area can be increased and lower strain levels tolerated.
Duyal-element semi-cunductor gauges, having the same temperature coefricient of resistance and gauge factors
of opposite sign are available, designed to compensate for the effects of differential thermal expansion
when mounted on steel (expansion coefficient = 11 x 1078 K'l) and when connected in adjacent arms of a
theatstone bridge circuit. The overall dimensions of a typical such pair are 10 mm x 4 mm, and the gauge
factcr about 120. With two such pairs in a four active-arm bridge (section 3.41) on a steel Tink of
cross-section 5 mm x 5 mm, a Toad of 500 N would produce a signal of about 12 mV/V at a strain of 10'“.*
Assuming a 3.5 V supply, corrasponding to 0.1 W dissipation “or gauges of 120 n resistance,™ and an
electrical noise level of 20 uV, the resolution of such a 1ink would be about 1 N or 0.2% of full-scale.
The corresponding strain, 0.2 x 10's may ve equivalent to a temperature change of only one or two kelvin,
even for the compensated gauges, so great ca:e would have to be exercised during a lengthy calibration
procedure to achieve this resolution, though no difficulty should arise while making dynamic measurements,
With such Tow strains, deflections of the transducer are negligibly small, a very desirable attribute.

A tension link of lower capacity, about 70 N or so, could be devised by using aluminium alloy in place of
steel and a rather smaller cross-sectional area of "-shape, but such Tinks are not iceal for smaller loads,
either because the strains are too low, or because of the manufacturing difficulties of machining thin
sections from the solid. Links fabricated by boiting together several parts are likely to introduce
hysteresis into the system, and so shculd be avoided.

The dependence of strain on load alone can he avoided by arranging that the force to be measured
exerts a couple on the section occupied by the transducer. The strain in the gauged section can then be
increased, independently of the force itself, simply by increasing the moment arm, An obvious
modification of the simple tension link is to arrange for the load to be applied eccentrically, figure 3.14,
The gauges are then connectcd tn measure the strains due to bending only, the axial strain being cancelled
by the Wheatstone bridge circuit arrangement, again using four active arms. The sensitivity to load of
this arrangement is a factor 6e/h times greater than the simple axially-loaded bar, whee e/h is the
eccentricity ratio, h being the thickness of the bar in the plane of bending, The eccentrically ioaded
link is of course more deflective, the total deflection & being given by

e 1
where Sb is the surface strain due to bending only and L is the effective length of the prismatic bar.

The maximum strain experienced by a gauge is a combination of the bending and axjal strains. It
may be shown that this is (1 + EE7F]Sb’ and it is this value which must not exceed.that specified to ensure
the strain gauges remain within their linear range. With this constraint, the minimum deflection occurs
for e/h = 1/6, corresponding to a "useful” strain Sb of only half the allowable maximum, However by
adopting an eccentricity ratio e/h = 2 say, and accepting the larger deflection, the "useful" strain
becomes 12/13 of the allowable maximum. The parasitic strain, that is the strain due directly to the
axial loading which is cancelled by the electrical circuit arrangement, is only 1/13 of the allowable
maximum, so that the Toad capacity is diminished by a factor of 13, ﬁeturning to the earlier example
of a prismatic steel bar of cross-section 5 mm square, a strain of 10" is now achieved with a load of about
40 N, which can be resolved to 0,2%, However the strain field is now anti-symmetric, so that (nearly)
equal and opposite changes in resistance can be produced by using only p-type silicon gauges. These
gauges can be carefully selected and closely matched, and the linear range may be extended by utilising
a four active-arm bridge arrangement as described in section 3.41, The allowable maximum strain can be
raised to 10'3. Buckling is now unimportant, since it no Tonger provides an operational limit to the
compressive load capacity. The cross-sectional dimensions may therefore be reduced, so that the column

*  For these dual-element gauges, the range of strain over which the fractional resistance change is

nearly linear with strain is very limited, because the second order coefficients of the p-type and n-type
materials cannot be adjusted independently of the first order coefficient,

** Yo use this merely as an example. In general circumstances there are clear adyantages in using
gauges of high resistance, since for a given dissipation the bridge voltage is higher and so therefore is
the output signal. In favourable circumstances the resolution may be equivalent to a strain of 1078,
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has the same load capacity but a greatly improved resolution. The "gammaform” 1ink described by
Rabuffet (1956) and illustrated in figure 3.15 is ong variant of the simple eccentrically-loaded column.

Lateral loads, arising from inadequate decoupling, will alse produce bending of the column. In
order to minimise such interactions from other force components it is good practice where space permits,
to split the eccentric column into two equal narts, one each side of the loading axis. The various
Toading rings, figure 3.16, which are widely used as loxd cells are really extensions of this idea.

Such rings tend to occupy a great deal of space, are rathor deflective, and are perhaps not really
suitable for use in very short duration flows, except maybe for measuring small axial loads. Where such

rings are used, the rectangular variety with flat surfaces are better for gauge mounting than those with
curved surfaces.

The measuremant of pitching and yawing moment may be accomplished by measuring the normal and
side~force components at a pair of stations spaced a suitable distance apart along the longitudinal
axis of the model. One may therefore use force links of the kind we have discussed, The rolling moment
is however more efficiently measured using a torque-tube -~ a thin-walled tube of circular cross-section
in which the shear strain is determined using a pair of strain-gauges at an angle of n/4 to the generators,
as shown in figure 3.17. Usually two such pairs of gauges are used in a four active-arm bridae.

Approaches of this kind, utilising an assembly of inaividually-designed transducers, are not
uncommon - indeed a wide range of such six-component wind-tunnel balances: is available commercially.*
However the instrumented cantilever sting-balance is better suited for high frequency applications, since
it can be made more compact. The well~known basic principle is illustrated by the instrumented beam
of figure 3.18. Suitable combinations of the strain-gauges in Wheatstone bfjdge circuits each provide an
output proportional to only one force component in an axis system aligned with that of the beam, The
effects of the other components are decoupled, to first order at least, by the electrical circuit
arrangement. Thus the summing and differencing circuits (see section 3.41) for gavges 1, 2, 3 and 4
provide the z-component of force and the moment M about the y~axis, as shown. For dynamic measurements
switching from one circuit arrangement to the other is impractical, and the gauges are duplicated.

The simple bar is not really suitable for torque measurements and a specially machined section,
such as one of those shown in figure 3.19 is generally provided. The same idea is extended in practice
to improve the sensitivity to the other components of force. A number of instrumented, cantilever
sting-balances have been built and successfully operated in continuous flow tunnels, notably in France
(Rebuffet, 1956). Some examples of machined cantilevers designed to measure five force-components (axial
force is excluded) are illustrated in figure 3.20. The chief problem with such balances in gereral, is
to achieve sufficient resolution to measure the axial force without introducing interactions from the
other, frequently much larger force components. In hypersonic flows, where 1ift/drag is of order unity,
this may not be s6 serious a problem, but the difficulty remains of providing a decoupled, sufficiently
sensitive transducer to measure the axial force, while at the same time ensuring that the model is
adequately supported at the required attitude to the flow., The decoupling for the other force components
is essentially provided electrically by the bridge circuits, and the strain levels are made relatively
large by appropriately choosing the moment arm. This is less easy to accomplish with the axial force,
since space is very limited in lateral directions.

In "static” balances for continuous-flow wind-tunnels, the axial-force measuring system can be
moved aft using some kind of kinematic 1inkage, but this is not suitable for unsteady measurements, because
friction and backlash in the bearings remain uncertain, and because of the low resonant frequencies
associated with such linkages. One would like, moreover, to house the compiete balance system within

the model, so as to avoid the complication of shielding the balance from aerodynamic loads on the sting
and supporting structure.

Figure 3.21 shows a three-component balance employing metal strain gauges which is used in the
gun-tunnel at Braunschweig. It makes excellent use of the limited space available,

The most promising solution to these problems, assuming that resistance strain-gauges are to be
used, is to combine the advantages of the single-piece balance with those of individually-designed

* Task Corporation, Anaheim, California, U.S,
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transducers, The complete force-talance is then machined from a single-piece of metal, but conceptually
it consists of individual force transducers (which may be tension links, load-rings, cantilavers or any
other suitable shape) and decoupling pivots. Some early attempts at such a balance have been described
by Opatowski (1966, 1971), Both the balances he {iscribes were three-component balances, external to
the model itself, and were designed for use in a gun-tunnel where the flow duration is typically 25-45 ms.
In the first balance, illustrated in figure 3.22, the force links are cantilevers., The rearmcst
cantilever measures drag and the other pair were designed to provide both 1ift and pitching moment. 1In
the event they proved insufficiently accurate to measure the latter and a mement sensing beam was later
incorporated in the incidence coarse-adjustment gear at the forward-end of the balance. This sub-assembly
was pivoted in a phosphor-bronze bush, the rear end of the assembly being restrained by a pin which was
free to slide fore and aft in a slot in the main beam of the balance., Silicon semi-conductor gauges were
used for the moment sensor, metal foil gauges for the cantilever 1inks. An interesting feature of this
balance is the provision of an hydraulic damper, the natural frequency of the system being deemed too low
for electronic filtering. In practice the damper, which used a high viscosity silicone oil (viscosity,
1000 stokes), reduced the amplitude of the oscillations, but also tended to couple the 1ift and drag.

In the second balance, figure 3.23, a far more compact arrangement was adopted. Lift and drag
were now sensed using tension links only 0.25 mm thick; to obviate buckling these were made very short.
The pitching moment was measured conventionaliy at the forward end of the sting. Semi-conductor strain
gauges were used throughout, and the lowest natural frequency was 350 Hz with no model attached. In its
original form, with 1ight side-covers to the balance, there was considerab'e interaction between 1ift and
drag, but this was reduced by using 3 mm gauge-plate. The balance was also sensitive to loads on its
exterior, and a separate wind-shield had to be added.

The lessons are clear., Those parts of the balance which do not play an active role in
measurement, either by pivoting to provide decoupling or by undergoing strain to produce an output from
the gauges, must be as stiff as possible. For the single~piece balance only the minimum amount of
material should be removed to form these pivots and force-links and to allow access to affix the strain
gauges.

t

} A brief remark is in order here about suitable materials for force 1inkages and balance systems.
! The general requirement that the system has high natural frequencies implies that the material must have
a high specific stiffness. Although beryllium is some six times better than steei and aluminium alloy
in this respect, its toxicity makes very special machining facilities necessary, so that in most
circumstances the more common and less expensive materials are employed. Both the aluminium alloys and
the steels remain in their linear elastic regions at the gauged sections, for the strain Tevels envisaged,
but the elastic pivots used for decoupling extraneous loads, as described in the next section, may suffer
somewhat larger deflections. In order to provide for these, and for overloads, the material chosen
should possess a very high yield strength, and experience indicates that although the aluminium alloys
can often be used, a generally suitable material is.17-4 PH stainless steel, Precipitation-hardened
materials of this kind do not require quench-hardening, but can be hardened by suitable heat-treatment
after machining. Since quenching is a common cause of distortion, it is a process to be avoided where
thin sections a2 involved. Conventional machining processes can also give rise to residual stresses
which are released by the subsequent heat treatment and the modern technique of spark-erosicn machining
provides an excellent alternative. Very small holes and slots of compiex shape can be cut using this
technique, so that it is eminently suited for the manufacture of single-piece, multi~component balances.
A good,smooth surface is produced directly so that "finishing" is not normally required - it would be
difficult in any case in the confined spaces to do any other machining, It may however be necessary to
roughen the surface so that the gauges can be effectively bonded (see gauge manufacturer's Titerature).
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3 A successful force transducer is clearly the result of some compromise, By way of summary we
1ist here some of the important points that should be borne in mind during design and construction,

(i) The piezoresistive transducer should be designed for maximum surface strains of 10”2 where metal
foil and moderately sensitive semi-conductor strain gauges are envisaged and for half this value
when high sensitivity semi-conductor gauges are to be used, When "full" compensation for non-

] Tinearity is not possible, for example when using a dual-element p- and n-type pair, the strain

should be 1imited to about 10™°, f
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{ii) Mounting on very thin surfaces should be avoided; a minimum thickness of 0.5 mm is suggested,

(iii) High-resistance gauges can be used when necessary to enhance output; the gauges should be as
large as the space permits.

(iv) Where possible, bridge circuits with four fully-active gauges should be used. These should be
positioned fairly close to one another so that temperature changes affect them all equally.

(v) The gauges should be located on flat surfaces.
{vi) The gauges should be on surfaces unstrained by extraneous loads,

(vii) The mounting of gauges should be carried out in accordance with the manufacturers' instructions.
Extreme cleanliness and care in handling are usually well rewarded., The resistance of each of
the gauges (both forward and reverse for semi-conductors) should be checked at every stage, At '
ary sign of a marked change the gauge should be replaced immediately - with matched gauges it may
be necessary to replace more than one. !

3.233 Pivots

In an ideal balance each transducer would respond to only the one force component it was designed X
to measure. Decoupling from the other components may be achieved in several ways as we have seen. Here :
we are concerned principally with mechanically~-decoupled balance systems, though in practice they are best
used in combination with electrical-circuit decounling when this is possible. How closely a mechanically-
decoupled balance approaches the ideal depends in very large part on the pivots or hinges which allow the
"1, awanted" force components to by-pass the transducer. The pivots are not required to rotate through a
Jarge angle, the relative lateral displacement of the ends of a transducer-pivot system being determined
by the axial® displacement of another transducer. This is shown diagrammatically in figure 3.24 in which
only the force component F1 is supposed to act. The main restraint is provided by the transducer T,,
which undergoes an axial displacement. In consequence the transducer T2 suffers a lateral displacement,
and its pivots must be laterally very compliant so that T2 does not respond to the force Fl. The pivots

must also be axially stiff, and of course without backlash or hys*eresis. Compactness is a desirable

i asset, These very stringent requirements are most nearly met by integrally-constructed, elastic flexures,
The basic concept of the elastic flexure is illustrated in figure 3.25 where the necessary two lateral
degrees of freedom are provided by a pair of thin strips, in tandem, at right-angles to one another. Two .
such flexure pairs must be provided for each force-link, one either side of the transducer sensing element.
The outer ends are connected, one to the model experiencing the load, the other to the support.

The chief dis.dvantage of the elastic flexure is that it does possess some lateral stiffnecs, and
to this extent the balance becomes an indeterminate structure. In effect some of the load to be measured
by a particular transducer in a multi-component system is reacted in part by the others as a consequence

of their finite lateral stiffness, and is "lost", There is thus a small reduction in sensitivity, but -
more important, interactions occur. Provided the lateral compliances are large however, the flexures 3
clcsely approximate perfect pivots and the structure is very nearly statically determinate. A crude k
analysis of the flat strip flexure shows that the fraction of the axial load that is "lost" is proportional
to (t/H)z, where t is the thickness of the strip in bending and H is the distance between coplanar strips.
) Thus to achieve good decoupling, the thickness of the flexures should be small compared with the distance
separating them,

In practice the double flat-strip flexure of figure 3.25 is rather space-consuming, and for this {
reacon is not often used. A more compact arrangement is the "circular arc" flexure, several examples of
which are illustrated in figure 3.26. Here each flexure consists of the material remaining between a
pair of paraliel holes drilled normal to the axis of the element, one either side and parallel to a plane 1
containing this axis. Elongated flat-strip flexures may be formed in a similar manner by milling slots
instead of d:i11ing holes. Such flexures may be accurately manufactured, and all the machining completed
before the finalsaw-cuts are made to free the flexures,

Elastic pivots of this type are required to operate under both compressive and tensile loading.
As the axial force changes, three important effects occur:-

* The terms "axial" and "lateral” are used here in reference to the axis of the transducer
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(a) the angular or lateral stiffness alters. The existence of angular stiffness leads to an
interaction; when tue stiffness is load dependent, these interactions will be non-linear;

(b) the position of the effective centre of rotation changes; and

(c) the allowable angular deflection corresponding to a maximum stress level in the flexure, varies.

The extent of these changes is different for circular-arc and flat-strip flexures. In general
the angular stiffness and position of the centre of rotation change less with axial load for circular-arc
pivots, but the allowable angular deflection is greater for the flat-strip pivot. Because the thickness
of the circular-arc flexure varies along its length, the lateral stiffness is somewhat higher than that of
a flat-strip flexure of the same "length", To achieve the same lateral compliance therefore, the circular-
arc flexure must occupy more space axially than would a flat-strip flexure. The axial deflection which
takes place is therefore also larger for the circular-arc flexure. On the whole however, its advantages
cutweigh these deficiencies. Tracy (1961) sugzests (as suitable.design values) that the ratio of arc
diameter to minimum thickness (d/t), should lie betw.en 3 and 8. The equivalent length/thickness range
for flat-strip flexures having the same bending stiffness is about 1.5 to 2.5. Values of (d/t) less than
3 lead to excessive bending stresses and a lack of compliance; values greater than 8 exhibit little gain
in compliance and are over-deflective, a feature which is generally undesirable.

The aim should be very thin, widely-spaced flexures, that is (t/H) small, with a value of (d/t)=3.
If the stresses due to bending are found to be excessive, the arc diameter d should first be increased,
and the thickness t increased only if the overall stress is still too large. As a final resort the
flexure may be elongated, but according to Tracy (1961) this should rarely be necessary.

3.24  Accelerometers

The principle of the accelerometer is based upon the behaviour of the single-degree-of-freedom
system discussed in section 2.31. A body of inertial mass m is connected via a spring of stiffness k to
the object whose acceleration is to be measured. Although the inclusion of a viscous damper is not always
possible in a practical accelerometer, the damped instrument has advantages, and in any case the effects of
any damping must be understood by the user. We shall therefore include such a damper, of coefficient c,
and examine the system represented in figure 3,27,

Writing as x(t) the displacement of the body, and as x(t) that of the base to which the spring is
attached, the equation of motion for the body is

mk = -k(x-x) -c(%-x) (3.47).

A sensing device attached to the spring - indeed the spring stiffness may be that of the sensor itself -
measures the relative displacement (x-x) = z, say. Rewriting equation (3.47) accordingly, we have

2+ 2ui+aiz = =x(t) (3.48)

where k = mmﬁ and ¢ = 2z/km as before,
Now suppose we consider an harmonic oscillation x = xoe‘“t
complete solution of equation (3.48) is, for <1

of the base. With this input function, the

(w_)z e'iwt
-zw t v, Xo
Z(t)=Ze " sin(/T-gZ w bt + §} - - (3.49).
Qa- ((‘:’,—n) + 21;—2;}
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Now the first part of this solution, the complementary function, represents a damped oscillation at the
frequency wn/T:ETZ which 3 a characteristic parameter of the system. We must suppose, either that the )
damping c attenuates the transien! oscillations at this frequency so that they are unimportant in 1
comparison with the base-excited motion after a short time, or that the transducer output signal can be
processed to reduce this oscillatory component to negligible proportions during the test-time. Such
filtering should be possible as long as w < Wy that is so long as we do not wish to use the transducer
near its resonant frequency (we are concerned here with the undamped or lightly damped instrument).
This point has perhaps to be made more forcibly than usual, since we are interested in measuring
acceleration transients.

Ja




The acceleration of the base is x = -mzxo e]wt, so that equation (3.49) now reduces to

1/?
Z . - 2“ (3.50).
X - (o jr &
fn () + i "’n}

We see that when ; ¥~ 0, there is a phase difference ¢ say, between the relative displacement z and the
acceleration of the base, given by

-2z W
“n
tan ¢ = (3.51)
w2
1- ()
()
n
and that the ratio of the absolute magnitudes is given by
2
. (1/6,)
= (3.52).
X

) 2.2 )
i - @5 )
wn (t)n
2.2 2 -
The phase angle ¢ and the "gain factor" {[1 - (%}0 1+ [2g &1 : are both functions of the excitation
frequency w. They are plotted against the freqaency ratio (w/wn) for several values of the damping ratio
¢ in figures 3.28 and 3.29.

For an undamped system, there is no phase shift, but the gain factor remains within about 10% of
unity up to a frequency ratio of about 0.3, and within 5% of unity only up to about %~ = 0,2,
n

The inclusion of damping, when it is possible, clearly has advantages so far as the constancy of
the gain factor is concerned. The optimum value of ¢ = 0.65 results in a2 maximum variation in the gain
factor of only 1.25% over the frequency range 0 < w < 0.6 Wy e There is however a phase shift, but as
one can see from figure 3.29 this is very nearly linear with v at ¢ = 0.65.

In general circumstances the base excitation will not be harmonic. When it is periodic, it may
be expressed as a Fourier series of harmonic terms, and by extension a finite pulse can be regarded as
one cycle of some periodic behaviour, and therefore expressed likewise. (More general situations can be
represented by a continuous Fourier spectrum.) The base excitation is now written

x(t) = §Xoj e'* (3.53)

0
for 0 <t < Tp

where o is che pulse duration, and we find for the particular integral

W 2
D) xgy elitust - 95}
2(t) = §— — - (3.54).
W0 - &)Y (2
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For the case ¢ = 0.65, the gain factor is nearly unity for 0 < w3 < 0.6 Wy Moreover since ¢ is nearly
linear with w , we have

¢
L = constant = t say
(dj 0

and equaticn (3.54) becomes
wj 2 .
2(t) = [ (G2) x5 explia;(t - ty)] (3.55)
in

so that all the harmonic components are shifted in time by the same amount tos and the acceleration
function is reproduced without phase distortion.

We thus have two cases for possible practical application:
(i) very small damping, ¢ + 0, and 0 < w < 0.3 Wy
(ii) a specific value of damping corresponding Lo ¢ = 0.6% and 0 < w % 0.6 @y
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The majority of accelerometers are in the first category, particularly those having a high resonant

frequency Wy and any measurements made with such transducers must be interpreted in the light of the
foregoing remarks.

Some response calculations for idealised pulse shapes have been carried out by Levy & Kroll (1950)
for various values of damping ratio and of the ratio v /r  where T = (Zn/wn) is the characteristic
period of the transducer and r. the duration of the pulse. Some of their results are sketched in figures
3.30. The advantages of a damping ratio ¢ of about 0.7 are clearly seen, but since practical transducers
have ¢ < 0,1, it is imperative that they be used in situations where rnlrp is small if the response is to
bear an easily interpretable relationship to the input.

The low-frequency response is also of some importance. As an illustration of the general
requirement it is sufficient to consider the response to a rectangular acceleration pulse of duration -_,
and assume that the resonant frequency oy is very high, and is not excited, The output of the meacuring
system is a sharp rise corresponding to the leading edge of the pulse, followed by an exponential decay
which lasts for a time t_; a similar, but inverted response then occurs, the decay towards zero output
taking an infinite time. If we identify the rectangular pulse with the test-time, the fractional "droop"
is {1~ e~/ Tc) = rp/rc when t., the decay time constant, is long. This time constant is generally that
of the transducer in combination with the following electronic amplifier and it should be some 50 to 100
times larger than v.. In situations where accelerometers ave likely to be used, say flow durations of
less than 10 ms, the low frequency time constant should be about 1 second.

In our discussion so far we have concentrated only upon that part of the "sensitivity factor"
which varies with frequency w. Equations (3.50) and {3.55) show that the mechanical transfer function
also contains the factor ]/wﬁ, which of course is a constant for any particular transducer. However the
presence of such a factor indicates that in transducers having a very high resonant frequency, the relative
displacement z for a given acce)eration* is 1ikely to be small. The senszr must therefore be sensitive
to these small displacements, and as one might expect piezoelectric, and to a smaller extent piezoresistive,
devices have found wide application.

In the piezoresistive accelerometers the spring element is generally in the form of a beam.
Strain gauges are mounted on the surfaces of the beam to sense the strains due to transverse bending which
occur as a result of the inertia loading due to the motion of the body of mass m attached to it. Some of
the configurations possible are shown schematically in figure 3.31. The resonant frequency of this type
of instrument is relatively low even when, to effect miniaturisation, the beam itself is of silicon with
diffused areas of impurity on the surfaces to sense the strain. This design does however lend itself
more readily than most others to the provision of damping, since the vibrating parts can be immersed in a
silicone 0il of suitable viscosity., The motion is often limited by stops. Acceleromaters of this kind
are available commercially, but only those with very low resonant frequency and high sensitivity appear to
incorporate damping. Beaussier (1966) describes a cantilever-type accelerometer with strain-gauges
arranged in pairs so as to sense accelerations along two axes normal to that of the cantilever, Damping
is provided using silicone o0il, and Beaussier gives the natural frequency as about 1.6 kHz, the dimensions
of the transducer being length, 16 nm and diameter, 5 mm,

High resonant frequencies are much more easily achieved using piezoelectric sensors. The
piezoelectric material serves as both the spring element and as the sensor and the compressive, shear and
bending modes can all be used, Much of our discussion on force transducers applies directly here, since
the accelerometer is merely a device which senses the inertia force. We shall therefore restrict the
present discussion to those aspects of particular relevance to accelerometer design and use, and refer
the reader to section 3.23 for the more general topics.

Tnus shear-mode elements are likely to have an inherently low “cross-axis", “lateral" or “transverse"
sensitivity, all three terms being used to describe the sensitivity to accelerations in the plane normal
to the main axis of the transducer. Again, some of the advantages of this mode may not be realised when
reliance has to be placed on cemented joints. The shear-plate can be used in a bolted construction such

*

Tt 1s common practice to specify the sensitivity of a Tinear accelerometer in terms of 1ts output

“per g", where g = g, & 9,80665 m/s is implied. In a less Earth-centred world, the numbers will be
a factor 9.80665 smaller!
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such as that illustrated in figure 3.32(a), the transmission of the load relying on friction; the shear-
tube, figure 3,32(b), must rely on cemented joints, Both methods have been used in commercially
available accelerometers with a piezoelectric ceramic as the sensor,

The compressive mode is more widely used, because transducer construction is somewhat easier.
Electrical isolation of the piezoelectrical material from the transducer housing is conveniently achieved
by utilising a pair of discs or rings, suitably polarised, with the common central electrode used as the
output terminal., Some typical constructions are shown in f{jure 3.33, The inertial body is attached
somewhat differently in each case and this has an effect on their response to extraneous events. The
peripheral mounting of figure 3.33(a) gives a high sensitivity and a high resonant frequency, but because
the inertial body is maintained in contact with the piezoelectric sensors by a stiff spring connected to
the outer casing, the accelerometer is sensitive to high intensity sound and to temperature variations.

In addition strains in the base can be troublesome, and transducers of this type must be mounted with care,
at points where no surface distortions of consequence occur, since these may give rise to spurious signals.
The centre-mounting design of figure 3.33(b) overcomes many of these deficiencies, the assembly being on

a central post with the outer casing only providing general protection. The reduced sensitivity to strains
in the base arises from its greater thickness. Almost complete isolaticn from base strain can be
accomplished by the inverted arrangement of figure 3.33(c), but becavse vibrations in the casing are
readily transmitted to the sensor, the resonant frequency of this arrangement is somewhat lower than the
others, perhaps 60% or so for the same nominal sensitivity.

At the expense of bandwidth, one can obtain higher sensitivity for a given overall mass by using
bimorph elements in a bending mode. The construction is schematically similar to those of the piezo-
resistive-gauged beams of figure 3.31, but except when very high sensitivities are required, bending
types have no special advantages.

Several factors determine the extent to which the performance potential indicated by the idealised
results described above can be realised. 1In the analysis we considered a single degree-of-freedom system,
and assumed a response to the acceleration along only one axis, 03 say. With such an ideal transducer,
the directional sensitivity follows a cosine law, the sensitivity locus having the familiar figure-of-
eight shape illustrated in figure 3.34, The transverse sensitivity in the plane normal to 03 is zero
for the ideal accelerometer. In practice this cannot be realised. Imperfect alignments and poor
seatings resulting from manufacturing tolerances can give rise to finite transverse sensitivity. For
example, where the axis of maximum sensitivity is not perpendicular to the base of the transducer which
serves as a mounting reference, there will be an apparent transverse sensitivity proportional to the sine
of the '»isalignment angle. Deviations of the polarisation axis of the piezoelectric element from the
intended direction can give rise to such misalignments in certain transducer configurations. On the
whole, axially-symmetric transducer designs probably have lower transverse sensitivity than other
configurations.

The range of linear accelerometers available commerically is now very large, extending from sub-
miniature piezoelectric transducers having a total mass, including the housing, of less than 0.5 gram
with a resonant frequency of 75 kHz and a sensitivity of about 0.7 pC/gn, to much larger transducers
having correspondingly lower rescnant frequency and higher sensitivity. Triaxial accelerometers
consisting of three similar transducers mounted on a common base are also marketed. These commercial
accelerometers generally have a fairly small transverse sensitivity., Many are available with a maximum
cross-axis sensitivity of less than 5% of that along the main axis, and the direction of minimum transverse
sensitivity is frequently indicated with a Tine or a dot marked by the manufacturer. This information
can often be employed to good advantage when the accelerometer is mounted.

The mounting in fact plays a very important réle in the behaviour of the transducer. The majority
are attached by means of a threaded stud, The flat base of the accelerometer must be in firm contact with
the object whose acceleration is to be measured, but excessive torque used trying to improve this contact
can at best distort the transducer, changing its axial and transverse sensitivities, and at worst it can
damage the interior beyond repair. Some manufacturers recommend the mounting torque which should be used,
others specify a maximum., In the former case it is possible that the transducer is "torque-sensitive" in
which circumstances the same mounting procedure must always be followed carefully if reproducible results
are to be obtained. A poor mechanical contact will affect the high frequency performance and the
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: ; surface upon which the accelerometer is mounted:should be smooth and flat, with the axis of the threaded
1 hole for the stud carefully aligned perpendicular to this surface. To avoid “earth-loops" which are a

E ‘ potential source of electrical noise in the measuring system, an insulating stud and washer can be used.

g The tiniest accelerometers available commercially have no space for studs and must be cemented in

place. Waxes, epoxy resins and impact adhesives can all be used, depending on the level of acceleration
expected, but the cementing must be done with extreme care. Because of the delicacy of these sub-
miniature transducers, the pressures which can be applied during mounting are limited. To ensure

uniform contact and correct alignment, special jigs and tools should be used; often these are supplied
with the accelerometer,

The output cable, which should be of the low-noise variety (see section 3.42) can also present
difficulties. Since vibration of the cable can produce spurious signals, it should be anchored in such
1 a way as to prevent "whip", The side-entry position to the accelerometer is usually better than the top
:, entry from this point of view. Manufacturers often give very complete and explicit instructions regarding
r the mounting procedures to be followed in order to make best use of their transducers.

3 3.3 General aspects of force-balance design

Most engineering design is to some extent a compromise. The design of a transducer, and a multi-
compenent force-measuring system is merely a very complex transducer, is no exception. A number of
desirable qualities that any force-balance should possess may be listed and to these may be added those
peculiar to the present problem, that is those which arise from the short duration of the high-enthalpy
flow. In effect this separates the static performance requirements of the system from its dynamic
behaviour.  Of course this is not strictly possible. We have seen earlier in this chapter that
sensitivity and frequency response are not independent. Indeed for a given configuration, using this
3 term in a very wide sense, their product remains substantially constant. The implication is that there
is a 1imit to the range of conditions in which a force-balance may be used; force-balances employing our
present knowledge are unlikely to be suitable for low-force levels of very short duration. The actual
limit however depends upon the ingenuity of the designer and probably also on the patience of the user.
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Tracy (1961) gives a very good summary of wind-tunnel, sting-balance design. He was, however,
concerned only with steady forces, so that the dynamic performance of a balance was given no consideration,
What follows is closely patterned on nis accor~t, but it is supplemented where necessary so as to include
those features peculiar to the measurement of transients.

At the outset the designer is faced with a basic specification setting out the number of force-
components to be measured, the maximum values of these components® and the resolution req